Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephanie M. Cossette is active.

Publication


Featured researches published by Stephanie M. Cossette.


PLOS ONE | 2013

Astrocytes Directly Influence Tumor Cell Invasion and Metastasis In Vivo

Ling Wang; Stephanie M. Cossette; Kevin R. Rarick; Jill A. Gershan; Michael B. Dwinell; David R. Harder; Ramani Ramchandran

Brain metastasis is a defining component of tumor pathophysiology, and the underlying mechanisms responsible for this phenomenon are not well understood. Current dogma is that tumor cells stimulate and activate astrocytes, and this mutual relationship is critical for tumor cell sustenance in the brain. Here, we provide evidence that primary rat neonatal and adult astrocytes secrete factors that proactively induced human lung and breast tumor cell invasion and metastasis capabilities. Among which, tumor invasion factors namely matrix metalloprotease-2 (MMP-2) and MMP-9 were partly responsible for the astrocyte media-induced tumor cell invasion. Inhibiting MMPs reduced the ability of tumor cell to migrate and invade in vitro. Further, injection of astrocyte media-conditioned breast cancer cells in mice showed increased invasive activity to the brain and other distant sites. More importantly, blocking the preconditioned tumor cells with broad spectrum MMP inhibitor decreased the invasion and metastasis of the tumor cells, in particular to the brain in vivo. Collectively, our data implicate astrocyte-derived MMP-2 and MMP-9 as critical players that facilitate tumor cell migration and invasion leading to brain metastasis.


Journal of Biological Chemistry | 2015

Lipopolysaccharide (LPS)-mediated Angiopoietin-2-dependent Autocrine Angiogenesis Is Regulated by NADPH Oxidase 2 (Nox2) in Human Pulmonary Microvascular Endothelial Cells

Heather Menden; Scott R. Welak; Stephanie M. Cossette; Ramani Ramchandran; Venkatesh Sampath

Background: The mechanisms by which bacterial ligands alter angiogenesis remain unknown. Results: Lipopolysaccharide-mediated Angiopoietin-2-dependent autocrine angiogenesis in lung endothelial cells is regulated by NADPH oxidase 2. Conclusion: Endothelial Nox2 regulates Angiopoietin-2-dependent angiogenesis. Significance: This study presents new data regarding the regulation of proinflammatory angiogenesis. Sepsis-mediated endothelial Angiopoeitin-2 (Ang2) signaling may contribute to microvascular remodeling in the developing lung. The mechanisms by which bacterial cell wall components such as LPS mediate Ang2 signaling in human pulmonary microvascular endothelial cells (HPMECs) remain understudied. In HPMEC, LPS-induced Ang2, Tie2, and VEGF-A protein expression was preceded by increased superoxide formation. NADPH oxidase 2 (Nox2) inhibition, but not Nox4 or Nox1 inhibition, attenuated LPS-induced superoxide formation and Ang2, Tie2, and VEGF-A expression. Nox2 silencing, but not Nox4 or Nox1 silencing, inhibited LPS-mediated inhibitor of κ-B kinase β (IKKβ) and p38 phosphorylation and nuclear translocation of NF-κB and AP-1. In HPMECs, LPS increased the number of angiogenic tube and network formations in Matrigel by >3-fold. Conditioned media from LPS-treated cells also induced angiogenic tube and network formation in the presence of Toll-like receptor 4 blockade but not in the presence of Ang2 and VEGF blockade. Nox2 inhibition or conditioned media from Nox2-silenced cells attenuated LPS-induced tube and network formation. Ang2 and VEGF-A treatment rescued angiogenesis in Nox2-silenced cells. We propose that Nox2 regulates LPS-mediated Ang2-dependent autocrine angiogenesis in HPMECs through the IKKβ/NF-κB and MAPK/AP-1 pathways.


Developmental Dynamics | 2011

The identification of different endothelial cell populations within the mouse proepicardium.

Stephanie M. Cossette; Ravi P. Misra

The proepicardium is a transient embryonic structure that is a source of precursors of the epicardium, coronary smooth muscle cells, and may be a source of coronary endothelial cells (EC). To better understand proepicardium development a systematic analysis of EC appearance was performed. Multiple marker analysis showed that EC are present in the mouse proepicardium at embryonic day (E) 9.0 through E9.75. Distinct populations of EC were found that were associated with the liver bud, and the sinus venosus, as well as a population that do not appear to be associated with either of these structures. There was a temporal increase in the number of EC and temporal changes in the distribution of EC within the different populations during PE development. These findings indicate that EC exist in the proepicardium before coronary vasculogenesis, and support a model in which there is a heterogeneous origin for EC in the proepicardium. Developmental Dynamics 240:2344–2353, 2011.


Developmental Biology | 2016

Nogo-B receptor deficiency causes cerebral vasculature defects during embryonic development in mice.

Ujala Rana; Zhong Liu; Suresh Kumar; Baofeng Zhao; Wenquan Hu; Michelle Bordas; Stephanie M. Cossette; Sara Szabo; Jamie Foeckler; Hartmut Weiler; Magdalena Chrzanowska-Wodnicka; Mary L. Holtz; Ravindra P. Misra; Valerie K. Salato; Paula E. North; Ramani Ramchandran; Qing Robert Miao

Nogo-B receptor (NgBR) was identified as a receptor specific for Nogo-B. Our previous work has shown that Nogo-B and its receptor (NgBR) are essential for chemotaxis and morphogenesis of endothelial cells in vitro and intersomitic vessel formation via Akt pathway in zebrafish. Here, we further demonstrated the roles of NgBR in regulating vasculature development in mouse embryo and primitive blood vessel formation in embryoid body culture systems, respectively. Our results showed that NgBR homozygous knockout mice are embryonically lethal at E7.5 or earlier, and Tie2Cre-mediated endothelial cell-specific NgBR knockout (NgBR ecKO) mice die at E11.5 and have severe blood vessel assembly defects in embryo. In addition, mutant embryos exhibit dilation of cerebral blood vessel, resulting in thin-walled endothelial caverns. The similar vascular defects also were detected in Cdh5(PAC)-CreERT2 NgBR inducible ecKO mice. Murine NgBR gene-targeting embryonic stem cells (ESC) were generated by homologous recombination approaches. Homozygous knockout of NgBR in ESC results in cell apoptosis. Heterozygous knockout of NgBR does not affect ESC cell survival, but reduces the formation and branching of primitive blood vessels in embryoid body culture systems. Mechanistically, NgBR knockdown not only decreases both Nogo-B and VEGF-stimulated endothelial cell migration by abolishing Akt phosphorylation, but also decreases the expression of CCM1 and CCM2 proteins. Furthermore, we performed immunofluorescence (IF) staining of NgBR in human cerebral cavernous malformation patient tissue sections. The quantitative analysis results showed that NgBR expression levels in CD31 positive endothelial cells is significantly decreased in patient tissue sections. These results suggest that NgBR may be one of important genes coordinating the cerebral vasculature development.


Biology Open | 2015

Sucrose non-fermenting related kinase enzyme is essential for cardiac metabolism.

Stephanie M. Cossette; Adam Gastonguay; Xiaoping Bao; Alexandra Lerch-Gaggl; Ling Zhong; Leanne Harmann; Christopher Koceja; Robert Q. Miao; Padmanabhan Vakeel; Changzoon Chun; Keguo Li; Jamie Foeckler; Michelle Bordas; Hartmut Weiler; Jennifer L. Strande; Sean P. Palecek; Ramani Ramchandran

ABSTRACT In this study, we have identified a novel member of the AMPK family, namely Sucrose non-fermenting related kinase (Snrk), that is responsible for maintaining cardiac metabolism in mammals. SNRK is expressed in the heart, and brain, and in cell types such as endothelial cells, smooth muscle cells and cardiomyocytes (CMs). Snrk knockout (KO) mice display enlarged hearts, and die at postnatal day 0. Microarray analysis of embryonic day 17.5 Snrk hearts, and blood profile of neonates display defect in lipid metabolic pathways. SNRK knockdown CMs showed altered phospho-acetyl-coA carboxylase and phospho-AMPK levels similar to global and endothelial conditional KO mouse. Finally, adult cardiac conditional KO mouse displays severe cardiac functional defects and lethality. Our results suggest that Snrk is essential for maintaining cardiac metabolic homeostasis, and shows an autonomous role for SNRK during mammalian development.


PLOS ONE | 2016

Dual Specificity Phosphatase 5 Is Essential for T Cell Survival

Raman G. Kutty; Gang Xin; David M. Schauder; Stephanie M. Cossette; Michelle Bordas; Weiguo Cui; Ramani Ramchandran

The mitogen-activated protein kinase (MAPK) pathway regulates many key cellular processes such as differentiation, apoptosis, and survival. The final proteins in this pathway, ERK1/2, are regulated by dual specificity phosphatase 5 (DUSP5). DUSP5 is a nuclear, inducible phosphatase with high affinity and fidelity for ERK1/2. By regulating the final step in the MAPK signaling cascade, DUSP5 exerts strong regulatory control over a central cellular pathway. Like other DUSPs, DUSP5 plays an important role in immune function. In this study, we have utilized new knockout mouse reagents to explore its function further. We demonstrate that global loss of DUSP5 does not result in any gross phenotypic changes. However, loss of DUSP5 affects memory/effector CD8+ T cell populations in response to acute viral infection. Specifically, Dusp5-/- mice have decreased proportions of short-lived effector cells (SLECs) and increased proportions of memory precursor effector cells (MPECs) in response to infection. Further, we show that this phenotype is T cell intrinsic; a bone marrow chimera model restricting loss of DUSP5 to the CD8+ T cell compartment displays a similar phenotype. Dusp5-/- T cells also display increased proliferation, increased apoptosis, and altered metabolic profiles, suggesting that DUSP5 is a pro-survival protein in T cells.


Developmental Biology | 2014

Epicardial GATA factors regulate early coronary vascular plexus formation.

Kurt D. Kolander; Mary L. Holtz; Stephanie M. Cossette; Stephen A. Duncan; Ravi P. Misra

During early development, GATA factors have been shown to be important for key events of coronary vasculogenesis, including formation of the epicardium. Myocardial GATA factors are required for coronary vascular (CV) formation; however, the role of epicardial localized GATAs in this process has not been addressed. The current study was conducted to investigate the molecular mechanisms by which the epicardium controls coronary vasculogenesis, focusing on the role of epicardial GATAs in establishing the endothelial plexus during early coronary vasculogenesis. To address the role of epicardial GATAs, we ablated GATA4 and GATA6 transcription factors specifically from the mouse epicardium and found that the number of endothelial cells in the sub-epicardium was drastically reduced, and concomitant coronary vascular plexus formation was significantly compromised. Here we present evidence for a novel role for epicardial GATA factors in controlling plexus formation by recruiting endothelial cells to the sub-epicardium.


PLOS ONE | 2015

Endothelial Cell Surface Expressed Chemotaxis and Apoptosis Regulator (ECSCR) Regulates Lipolysis in White Adipocytes via the PTEN/AKT Signaling Pathway

Sreenivasulu Kilari; Stephanie M. Cossette; Shabnam Pooya; Michelle Bordas; Yi-Wen Huang; Ramani Ramchandran; George A. Wilkinson

Elevated plasma triglycerides are associated with increased susceptibility to heart disease and stroke, but the mechanisms behind this relationship are unclear. A clearer understanding of gene products which influence plasma triglycerides might help identify new therapeutic targets for these diseases. The Endothelial Cell Surface expressed Chemotaxis and apoptosis Regulator (ECSCR) was initially studied as an endothelial cell marker, but has recently been identified in white adipocytes, the primary storage cell type for triglycerides. Here we confirm ECSCR expression in white adipocytes and show that Ecscr knockout mice show elevated fasting plasma triglycerides. At a cellular level, cultured 3T3-L1 adipocytes silenced for Ecscr show a blunted Akt phosphorylation response. Additionally we show that the phosphatase and tensin homology containing (PTEN) lipid phosphatase association with ECSCR is increased by insulin stimulation. These data suggest a scenario by which ECSCR contributes to control of white adipocyte lipolysis. In this scenario, white adipocytes lacking Ecscr display elevated PTEN activity, thereby reducing AKT activation and impairing insulin-mediated suppression of lipolysis. Collectively, these results suggest that ECSCR plays a critical function in regulating lipolysis in white adipose tissue.


Circulation-cardiovascular Genetics | 2016

Sucrose Nonfermenting-Related Kinase Enzyme-Mediated Rho-Associated Kinase Signaling is Responsible for Cardiac Function.

Stephanie M. Cossette; Vijesh Jagdish Bhute; Xiaoping Bao; Leanne Harmann; Mark Horswill; Indranil Sinha; Adam Gastonguay; Shabnam Pooya; Michelle Bordas; Suresh Kumar; Shama P. Mirza; Sean P. Palecek; Jennifer L. Strande; Ramani Ramchandran

Background—Cardiac metabolism is critical for the functioning of the heart, and disturbance in this homeostasis is likely to influence cardiac disorders or cardiomyopathy. Our laboratory has previously shown that SNRK (sucrose nonfermenting related kinase) enzyme, which belongs to the AMPK (adenosine monophosphate–activated kinase) family, was essential for cardiac metabolism in mammals. Snrk global homozygous knockout (KO) mice die at postnatal day 0, and conditional deletion of Snrk in cardiomyocytes (Snrk cmcKO) leads to cardiac failure and death by 8 to 10 months. Methods and Results—We performed additional cardiac functional studies using echocardiography and identified further cardiac functional deficits in Snrk cmcKO mice. Nuclear magnetic resonance-based metabolomics analysis identified key metabolic pathway deficits in SNRK knockdown cardiomyocytes in vitro. Specifically, metabolites involved in lipid metabolism and oxidative phosphorylation are altered, and perturbations in these pathways can result in cardiac function deficits and heart failure. A phosphopeptide-based proteomic screen identified ROCK (Rho-associated kinase) as a putative substrate for SNRK, and mass spec-based fragment analysis confirmed key amino acid residues on ROCK that are phosphorylated by SNRK. Western blot analysis on heart lysates from Snrk cmcKO adult mice and SNRK knockdown cardiomyocytes showed increased ROCK activity. In addition, in vivo inhibition of ROCK partially rescued the in vivo Snrk cmcKO cardiac function deficits. Conclusions—Collectively, our data suggest that SNRK in cardiomyocytes is responsible for maintaining cardiac metabolic homeostasis, which is mediated in part by ROCK, and alteration of this homeostasis influences cardiac function in the adult heart.


Cancer Investigation | 2017

Sucrose Non-Fermenting Related Kinase Expression in Ovarian Cancer and Correlation with Clinical Features

Elizabeth E. Hopp; Stephanie M. Cossette; Suresh Kumar; Daniel Eastwood; Ramani Ramchandran; Erin Bishop

ABSTRACT Sucrose non-fermenting related kinase (SNRK) is a serine/threonine kinase known to regulate cellular metabolism and adipocyte inflammation. Since alterations in adipocyte metabolism play a role in ovarian cancer metastasis, we investigated the expression of SNRK in benign and malignant human ovarian tissue using immunohistochemistry and qPCR. The number of SNRK positive (+) nuclei is increased in malignant tissue compared to benign tissue (21.03% versus 14.90%, p < .0431). The most strongly stained malignant SNRK+ nuclei were stage 1 compared to stage 2–4 disease. Differential expression of SNRK in early versus late stage disease suggests specific roles for SNRK in ovarian cancer metastasis.

Collaboration


Dive into the Stephanie M. Cossette's collaboration.

Top Co-Authors

Avatar

Ramani Ramchandran

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Michelle Bordas

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Erin Bishop

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

David R. Harder

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Jill A. Gershan

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Kevin R. Rarick

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suresh Kumar

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Adam Gastonguay

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Elizabeth E. Hopp

Medical College of Wisconsin

View shared research outputs
Researchain Logo
Decentralizing Knowledge