Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephanie M. Hughes is active.

Publication


Featured researches published by Stephanie M. Hughes.


Free Radical Biology and Medicine | 2012

Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells.

Reagan M. Jarvis; Stephanie M. Hughes; Elizabeth C. Ledgerwood

Hydrogen peroxide is widely viewed as the main second messenger in redox signaling, and it has been proposed that deactivation of the antioxidant peroxiredoxin (Prdx) enzymes allows free peroxide to accumulate and directly oxidize target proteins (the floodgate model). We assessed the role of cytosolic Prdxs 1 and 2 in peroxide-induced activation of the apoptosis signaling kinase 1 (ASK1)/p38 signaling pathway, in which oxidation of ASK1 is required for phosphorylation of p38. In response to peroxide, Prdx1 catalyzed oxidation of ASK1 to a disulfide-linked multimer, and this occurred via transient formation of a Prdx1-ASK1 mixed disulfide intermediate. Oxidation of ASK1 and phosphorylation of p38 were inhibited by knockdown of Prdx1, but also by overexpression of Prdx2. This suggests that these two cytosolic Prdxs have distinct roles in the cellular peroxide response and compete for available peroxide substrate. These data imply that Prdx1 can function as a peroxide receptor in response to extracellular H(2)O(2), receiving the peroxide signal and transducing it into a disulfide bond that is subsequently transmitted to the substrate, ASK1, resulting in p38 phosphorylation. Interestingly, in response to peroxide, Prdx1 and Prdx3 transiently formed reducible higher molecular weight complexes, suggesting that multiple proteins are targets for Prdx-mediated oxidation via a disulfide-exchange mechanism. This model of active peroxide signal distribution via disulfide exchange is consistent with Prdx function in yeast and explains how peroxides may trigger specific disulfide bond formation in mammalian cells.


Experimental Neurology | 2006

Transplanted adult neural progenitor cells survive, differentiate and reduce motor function impairment in a rodent model of Huntington's disease

Elena M. Vazey; Kevin Chen; Stephanie M. Hughes; Bronwen Connor

The present study investigated the ability for adult rat neural progenitor cells to survive transplantation, structurally repopulate the striatum and improve motor function in the quinolinic acid (QA) lesion rat model of Huntingtons disease. Neural progenitor cells were isolated from the subventricular zone of adult Wistar rats, propagated in culture and labeled with BrdU (50 microM). Fourteen days following QA lesioning, one group of rats (n = 12) received a unilateral injection of adult neural progenitor cells ( approximately 180,000 cells total) in the lesioned striatum, while a second group of rats (n = 10) received a unilateral injection of vehicle only (sham transplant). At the time of transplantation adult neural progenitor cells were phenotypically immature, as demonstrated by SOX2 immunocytochemistry. Eight weeks following transplantation, approximately 12% of BrdU-labeled cells had survived and migrated extensively throughout the lesioned striatum. Double-label immunocytochemical analysis demonstrated that transplanted BrdU-labeled progenitor cells differentiated into either astrocytes, as visualized by GFAP immunocytochemistry, or mature neurons, demonstrated with NeuN. A proportion of BrdU-labeled cells also expressed DARPP-32 and GAD67, specific markers for striatal medium spiny projection neurons and interneurons. Rats transplanted with adult neural progenitor cells also demonstrated a significant reduction in motor function impairment as determined by apomorphine-induced rotational asymmetry and spontaneous exploratory forelimb use when compared to sham transplanted animals. These results demonstrate that adult neural progenitor cells survive transplantation, undergo neuronal differentiation with a proportion of newly generated cells expressing markers characteristic of striatal neurons and reduce functional impairment in the QA lesion model of Huntingtons disease.


European Journal of Neuroscience | 2007

AAV-mediated delivery of BDNF augments neurogenesis in the normal and quinolinic acid-lesioned adult rat brain

Rebecca A. Henry; Stephanie M. Hughes; Bronwen Connor

Brain‐derived neurotrophic factor (BDNF) plays a major role in regulating the survival and fate of progenitor cells in the adult brain. In order to extend previous observations in the normal adult brain and advance our knowledge regarding the effect of BDNF on neurogenesis in the injured brain, this study directly compared the effect of BDNF on basal and injury‐induced neurogenesis in relation to progenitor cell distribution and levels of neuronal differentiation and survival. BDNF was overexpressed in the subventricular zone (SVZ) via recombinant adeno‐associated virus (AAV1/2) delivery, and newly generated cells were identified using bromodeoxyuridine (BrdU) labelling. Selective striatal cell loss was induced in a subgroup of rats by unilateral striatal injection of quinolinic acid (QA) 21 days after AAV1/2 injection. In the normal brain, BDNF overexpression significantly increased BrdU‐positive cell numbers in the rostral migratory stream, indicating enhanced progenitor cell migration. Following QA lesioning, we observed a reduction in BrdU immunoreactivity in the SVZ. Overexpression of BDNF restored BrdU‐positive cell numbers in the QA‐lesioned SVZ to that observed in the normal brain. Most significantly, BDNF enhanced the recruitment of progenitor cells to the QA‐lesioned striatum and promoted neuronal differentiation in both the normal and QA‐lesioned striatum. Our findings indicate that BDNF augments the recruitment, neuronal differentiation and survival of progenitor cells in both neurogenic and non‐neurogenic regions of the normal or QA‐lesioned brain. Enhanced expression of BDNF may therefore be a viable strategy for augmenting neurogenesis from endogenous progenitor cells.


Molecular and Cellular Neuroscience | 2007

Creating a neurogenic environment: The role of BDNF and FGF2

Kevin Chen; Rebecca A. Henry; Stephanie M. Hughes; Bronwen Connor

Regional environmental cues present in the adult brain determine the fate of adult neural progenitor cells. To determine whether the growth factors BDNF or FGF2 can create a neurogenic environment outside the SVZ, we used AAV(1/2)-mediated gene transfer to produce ectopic BDNF or FGF2 expression in the normal adult rat striatum and transplanted SVZ-derived progenitor cells into this region. We observed that ectopic expression of BDNF in the striatum promoted neuronal differentiation of transplanted adult neural progenitor cells, while FGF2 expression supported the survival and proliferation of transplanted progenitor cells in the adult striatum. However, region-specific neuronal differentiation of transplanted progenitor cells was not observed in the adult striatum, suggesting ectopic BDNF or FGF2 expression was insufficient for the generation of mature neuronal phenotypes. This study provides direct in vivo evidence that ectopic striatal expression of either BDNF or FGF2 can induce neurogenesis in non-neurogenic regions of the adult brain.


Journal of Neuroscience Methods | 2007

Cellular composition of human glial cultures from adult biopsy brain tissue

Hannah M. Gibbons; Stephanie M. Hughes; Willeke M. C. van Roon-Mom; Jeffrey M. Greenwood; Pritika Narayan; H. Heng Teoh; Peter M. Bergin; Edward W. Mee; Phil C. Wood; Richard L.M. Faull; M. Dragunow

Microglia and astrocytes play vital roles in normal human brain function and in neurological disorders. To study their physiological and pathological roles it is desirable to establish in vitro systems that are derived from the adult human brain. Although several groups have successfully cultured cells from the human brain, the composition of these cultures remains controversial. Using morphological criteria, immunocytochemical analysis and a BrdU incorporation assay we demonstrate the presence of poorly proliferative microglia and astrocytes in cultures derived from epilepsy biopsy tissue. In addition, we characterized a third cell type as fibronectin and prolyl 4-hydroxylase immunopositive fibroblast-like cells, which are highly proliferative and become the predominant cell type after successive sub-culturing. Therefore, although cultures from adult human brain tissue provide an excellent resource for studying human glial cells, careful consideration must be given to their cellular composition when performing studies using these methods.


Frontiers in Cellular Neuroscience | 2013

Diversity of layer 5 projection neurons in the mouse motor cortex

Manfred J. Oswald; Malinda L. S. Tantirigama; Ivo Sonntag; Stephanie M. Hughes; Ruth M. Empson

In the primary motor cortex (M1), layer 5 projection neurons signal directly to distant motor structures to drive movement. Despite their pivotal position and acknowledged diversity these neurons are traditionally separated into broad commissural and corticofugal types, and until now no attempt has been made at resolving the basis for their diversity. We therefore probed the electrophysiological and morphological properties of retrogradely labeled M1 corticospinal (CSp), corticothalamic (CTh), and commissural projecting corticostriatal (CStr) and corticocortical (CC) neurons. An unsupervised cluster analysis established at least four phenotypes with additional differences between lumbar and cervical projecting CSp neurons. Distinguishing parameters included the action potential (AP) waveform, firing behavior, the hyperpolarisation-activated sag potential, sublayer position, and soma and dendrite size. CTh neurons differed from CSp neurons in showing spike frequency acceleration and a greater sag potential. CStr neurons had the lowest AP amplitude and maximum rise rate of all neurons. Temperature influenced spike train behavior in corticofugal neurons. At 26°C CTh neurons fired bursts of APs more often than CSp neurons, but at 36°C both groups fired regular APs. Our findings provide reliable phenotypic fingerprints to identify distinct M1 projection neuron classes as a tool to understand their unique contributions to motor function.


Frontiers in Molecular Neuroscience | 2015

Lentiviral vectors as tools to understand central nervous system biology in mammalian model organisms

Louise C. Parr-Brownlie; Clémentine Bosch-Bouju; Lucia Schoderboeck; Rachel J. Sizemore; Wickliffe C. Abraham; Stephanie M. Hughes

Lentiviruses have been extensively used as gene delivery vectors since the mid-1990s. Usually derived from the human immunodeficiency virus genome, they mediate efficient gene transfer to non-dividing cells, including neurons and glia in the adult mammalian brain. In addition, integration of the recombinant lentiviral construct into the host genome provides permanent expression, including the progeny of dividing neural precursors. In this review, we describe targeted vectors with modified envelope glycoproteins and expression of transgenes under the regulation of cell-selective and inducible promoters. This technology has broad utility to address fundamental questions in neuroscience and we outline how this has been used in rodents and primates. Combining viral tract tracing with immunohistochemistry and confocal or electron microscopy, lentiviral vectors provide a tool to selectively label and trace specific neuronal populations at gross or ultrastructural levels. Additionally, new generation optogenetic technologies can be readily utilized to analyze neuronal circuit and gene functions in the mature mammalian brain. Examples of these applications, limitations of current systems and prospects for future developments to enhance neuroscience knowledge will be reviewed. Finally, we will discuss how these vectors may be translated from gene therapy trials into the clinical setting.


Human Gene Therapy | 2011

Lentiviral-Mediated Gene Transfer to the Sheep Brain: Implications for Gene Therapy in Batten Disease

Kathryn S. Linterman; David N. Palmer; Graham W. Kay; Lucy A. Barry; Nadia L. Mitchell; Robin G. McFarlane; Michael A. Black; Mark S. Sands; Stephanie M. Hughes

The neuronal ceroid lipofuscinoses (NCLs; Batten disease) are inherited neurodegenerative lysosomal storage diseases with common clinical features of blindness and seizures culminating in premature death. Gene-therapy strategies for these diseases depend on whether the missing activity is a secreted lysosomal protein taken up by neighboring cells, or an intramembrane protein that requires careful targeting. Therapies are best developed in animal models with large complex human-like brains. Lentiviral-mediated gene delivery to neural cell cultures from normal sheep and sheep affected with an NCL resulted in green fluorescent protein (GFP) expression in neurons and neuroblasts, more efficiently than in astrocytes. Similar transgene expression was obtained from two constitutive promoters, the viral MND promoter and the human EF1α promoter. In vivo studies showed stable and persistent GFP expression throughout the cell bodies, axons, and dendrites from intracortical injections and indicated ependymal and subependymal transduction. The sheep showed no ill effects from the injections. These data support continuing gene-therapy trials in the sheep models of Batten disease.


Cell Transplantation | 2007

Neural Progenitor Cells Derived from the Adult Rat Subventricular Zone: Characterization and Transplantation

Kevin Chen; Stephanie M. Hughes; Bronwen Connor

In order to fully characterize and determine the therapeutic potential of adult neural progenitor cells (NPCs), it is important to be able to isolate and study NPCs from animals such as rats, in which there are existing models of brain injury and disease. The focus of this study was to characterize the cultivation, differentiation, and transplantation of adult rat NPCs isolated from the subventricular zone of the lateral ventricles. We examined strategies for cell purification using a Percoll density gradient, and cell expansion using a range of maintenance medium and plating densities. Purification by Percoll gradient enriched a population of cells expressing nestin and SOX2, but resulted in a significant reduction in neurosphere generation. Culturing adult rat NPCs in Neurobasal-A media and plating at 200,000 cell/ml resulted in a higher percentage of cells surviving to generate neurospheres compared to culture in DMEM/F12 or NS-A media. On induction of differentiation, adult rat NPCs were capable of generating neurons, astrocytes, and oligodendrocytes in vitro that survived for up to 8 weeks, demonstrating multipotentiality of these cells. In addition, a population of cells continued to proliferate during the initial phase of differentiation, suggesting the presence of two populations of NPCs during differentiation. Cultured adult rat NPCs also survived and differentiated into astrocytes 6 weeks after transplantation into the striatum of the normal adult rat brain. In conclusion, we have optimized techniques that allow for the routine isolation, culture, and transplantation of multipotent NPCs derived from the adult rat SVZ.


The Journal of Neuroscience | 2015

Patterned, But Not Tonic, Optogenetic Stimulation in Motor Thalamus Improves Reaching in Acute Drug-Induced Parkinsonian Rats

Sonja Seeger-Armbruster; Clémentine Bosch-Bouju; Shane T.C. Little; Roseanna A. Smither; Stephanie M. Hughes; Brian I. Hyland; Louise C. Parr-Brownlie

High-frequency deep brain stimulation (DBS) in motor thalamus (Mthal) ameliorates tremor but not akinesia in Parkinsons disease. The aim of this study was to investigate whether there are effective methods of Mthal stimulation to treat akinesia. Glutamatergic Mthal neurons, transduced with channelrhodopsin-2 by injection of lentiviral vector (Lenti.CaMKII.hChR2(H134R).mCherry), were selectively stimulated with blue light (473 nm) via a chronically implanted fiber-optic probe. Rats performed a reach-to-grasp task in either acute drug-induced parkinsonian akinesia (0.03–0.07 mg/kg haloperidol, s.c.) or control (vehicle injection) conditions, and the number of reaches was recorded for 5 min before, during, and after stimulation. We compared the effect of DBS using complex physiological patterns previously recorded in the Mthal of a control rat during reaching or exploring behavior, with tonic DBS delivering the same number of stimuli per second (rate-control 6.2 or 1.8 Hz, respectively) and with stimulation patterns commonly used in other brain regions to treat neurological conditions (tonic 130 Hz, theta burst (TBS), and tonic 15 Hz rate-control for TBS). Control rats typically executed >150 reaches per 5 min, which was unaffected by any of the stimulation patterns. Acute parkinsonian rats executed <20 reaches, displaying marked akinesia, which was significantly improved by stimulating with the physiological reaching pattern or TBS (both p < 0.05), whereas the exploring and all tonic patterns failed to improve reaching. Data indicate that the Mthal may be an effective site to treat akinesia, but the pattern of stimulation is critical for improving reaching in parkinsonian rats.

Collaboration


Dive into the Stephanie M. Hughes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge