Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephanie M. Karst is active.

Publication


Featured researches published by Stephanie M. Karst.


Science | 2014

Enteric bacteria promote human and mouse norovirus infection of B cells

Melissa K. Jones; Makiko Watanabe; Christina L. Graves; Lisa R. Keyes; Katrina R. Grau; Mariam B. Gonzalez-Hernandez; Nicole M. Iovine; Christiane E. Wobus; Jan Vinjé; Scott A. Tibbetts; Shannon M. Wallet; Stephanie M. Karst

Bacteria help norovius infect B cells Stomach ache, nausea, diarrhea—many people know the sort of gastrointestinal havoc norovirus can wreak. Despite this, norovirus biology remains unclear, because human norovirus cannot be grown in culture. Jones et al. now report that with the help of bacteria, human norovirus can infect cultured B cells (see the Perspective by Robinson and Pfeiffer). To infect B cells, human norovirus required the presence of gut bacteria that expressed proteins involved in determining blood type. Mouse norovirus also infected B cells, and the treatment of mice with antibiotics protected them from norovirus infection. Science, this issue p. 755; see also p. 700 Gut bacteria that express histo-blood group antigens help human norovirus to infect B cells. [Also see Perspective by Robinson and Pfeiffer] The cell tropism of human noroviruses and the development of an in vitro infection model remain elusive. Although susceptibility to individual human norovirus strains correlates with an individual’s histo-blood group antigen (HBGA) profile, the biological basis of this restriction is unknown. We demonstrate that human and mouse noroviruses infected B cells in vitro and likely in vivo. Human norovirus infection of B cells required the presence of HBGA-expressing enteric bacteria. Furthermore, mouse norovirus replication was reduced in vivo when the intestinal microbiota was depleted by means of oral antibiotic administration. Thus, we have identified B cells as a cellular target of noroviruses and enteric bacteria as a stimulatory factor for norovirus infection, leading to the development of an in vitro infection model for human noroviruses.


Cell Host & Microbe | 2014

Advances in Norovirus Biology

Stephanie M. Karst; Christiane E. Wobus; Ian Goodfellow; Kim Y. Green; Herbert W. Virgin

Human noroviruses are a major cause of epidemic and sporadic gastroenteritis worldwide and can chronically infect immunocompromised patients. Efforts to develop effective vaccines and antivirals have been hindered by the uncultivable nature and extreme genetic diversity of human noroviruses. Although they remain a particularly challenging pathogen to study, recent advances in norovirus animal models and in vitro cultivation systems have led to an increased understanding of norovirus molecular biology and replication, pathogenesis, cell tropism, and innate and adaptive immunity. Furthermore, clinical trials of vaccines consisting of nonreplicating virus-like particles have shown promise. In this review, we summarize these recent advances and discuss controversies in the field, which is rapidly progressing toward generation of antiviral agents and increasingly effective vaccines.


Nature Protocols | 2015

Human norovirus culture in B cells

Melissa K. Jones; Katrina R. Grau; Veronica Costantini; Abimbola O. Kolawole; Miranda de Graaf; Pamela Freiden; Christina L. Graves; Marion Koopmans; Shannon M. Wallet; Scott A. Tibbetts; Stacey Schultz-Cherry; Christiane E. Wobus; Jan Vinjé; Stephanie M. Karst

Human noroviruses (HuNoVs) are a leading cause of foodborne disease and severe childhood diarrhea, and they cause a majority of the gastroenteritis outbreaks worldwide. However, the development of effective and long-lasting HuNoV vaccines and therapeutics has been greatly hindered by their uncultivability. We recently demonstrated that a HuNoV replicates in human B cells, and that commensal bacteria serve as a cofactor for this infection. In this protocol, we provide detailed methods for culturing the GII.4-Sydney HuNoV strain directly in human B cells, and in a coculture system in which the virus must cross a confluent epithelial barrier to access underlying B cells. We also describe methods for bacterial stimulation of HuNoV B cell infection and for measuring viral attachment to the surface of B cells. Finally, we highlight variables that contribute to the efficiency of viral replication in this system. Infection assays require 3 d and attachment assays require 3 h. Analysis of infection or attachment samples, including RNA extraction and RT-qPCR, requires ∼6 h.


Virology | 2011

Comparative murine norovirus studies reveal a lack of correlation between intestinal virus titers and enteric pathology

Shannon M. Kahan; Guangliang Liu; Mary K. Reinhard; Charlie C. Hsu; Robert S. Livingston; Stephanie M. Karst

Human noroviruses are significant emerging pathogens, causing the majority of non-bacterial gastroenteritis outbreaks worldwide. The recent discovery of 30 murine norovirus strains is beginning to facilitate a detailed investigation of norovirus pathogenesis. Here, we have performed an in vivo comparative analysis of two murine norovirus strains, MNV-1 and MNV-3. In immunocompetent mice, MNV-1 caused modest intestinal pathology whereas MNV-3 was attenuated compared to MNV-1. Surprisingly though, MNV-3 reached higher titers in intestinal tissue than MNV-1. MNV-3 also displayed attenuation in mice deficient in the critical interferon signaling molecule STAT-1, demonstrating that MNV-3 attenuation is not a result of increased interferon sensitivity. Importantly, MNV-3-infected mice lost weight and developed gastric bloating and diarrhea in STAT1(-/-) mice, from which all animals recovered. This disease profile recapitulates several key features of acute gastroenteritis experienced by people infected with a human norovirus.


Journal of Virology | 2015

What is the Reservoir of Emergent Human Norovirus Strains

Stephanie M. Karst; Ralph S. Baric

ABSTRACT Since 1996, there have been at least six human norovirus pandemics. All of the pandemic strains are genetically related, segregating in the genogroup II, genotype 4 (GII.4) cluster within the Norovirus genus. Evidence indicates that these strains are closely related but antigenically distinct, supporting immune-driven viral evolution. Thus, norovirus vaccines will likely require periodic reformulation to protect from newly emergent strains. A major obstacle is that the reservoir of emergent strains is unknown. Noroviruses display tight species specificity and there is no evidence supporting zoonotic transmission, so an animal reservoir is considered unlikely. Moreover, available data indicate minimal viral diversity in most natural human infections. In this Gem, we discuss the widely speculated idea that chronically infected immunocompromised individuals are norovirus reservoirs and provide a rationale for the theory that elderly and malnourished hosts may also represent norovirus reservoirs.


The Journal of Pathology | 2015

The molecular pathology of noroviruses

Stephanie M. Karst; Ian Goodfellow

Norovirus infection in humans typically results in acute gastroenteritis but may also occur in many animal species. Noroviruses are recognized as one of the most common causes of acute gastroenteritis in the world, being responsible for almost 20% of all cases. Despite their prevalence and impact, our knowledge of the norovirus life cycle and the pathological processes associated with norovirus‐induced disease is limited. Whilst infection of the intestine is the norm, extraintestinal spread and associated pathologies have also been described. In addition, long‐term chronic infections are now recognized as a significant cause of morbidity and mortality in the immunocompromised. This review aims to summarize the current state of knowledge with respect to norovirus pathology and the underlying mechanisms that have been characterized to date. Copyright


PLOS Pathogens | 2015

A Working Model of How Noroviruses Infect the Intestine

Stephanie M. Karst; Christiane E. Wobus

Human noroviruses (HuNoVs) cause a majority of gastroenteritis outbreaks across the globe and are the leading cause of severe childhood diarrhea and foodborne disease outbreaks in the United States [1,2]. In impoverished countries, they are estimated to cause over one million clinic visits and 200,000 deaths in young children annually [3]. However, the mechanisms used by noroviruses (NoVs) to infect the intestinal tract and cause disease are not well understood, primarily due to the paucity of cell culture and animal model systems. Recent major advances in developing such models now leave the field poised to tackle these critical questions. The goal of this opinion article is to propose a working model of early steps involved in intestinal infection by NoVs. In this model, NoVs bind carbohydrates on the surface of specific members of the intestinal microbiota and/or enterocytes and are then transcytosed across the intestinal epithelial barrier to gain access to their target immune cells. Evidence supporting each step of this model will be discussed. We also include a brief discussion of how NoVs cause disease as it relates to our model. NoVs Are Transcytosed Across Enterocytes in the Absence of Viral Replication HuNoV and murine NoVs (MuNoV) are transcytosed across intestinal epithelial cells in vitro [4,5], although they have not been shown to productively infect these cells in immunocompetent hosts (reviewed in [6]). Transcytosis of MuNoV across polarized murine intestinal epithelial cell monolayers does not disrupt tight junctions, is enhanced by B cell coculture, and is mediated by cells with characteristics of microfold (M) cells [4], a specialized cell type within the intestine responsible for sampling particulate antigen [7]. In a similar system, HuNoV virus-like particles were visualized on the basolateral side of cell nuclei from polarized Caco-2 cells [5], suggesting transport of particles through epithelial cells. However, whether particles were released from cells, whether particle transport modulated tight junction integrity, or whether a specialized cell type such as M cells mediated this process was not investigated. The importance of M cells for the efficient initiation of MuNoV infection in vivo was subsequently demonstrated by infecting mice depleted of M cells and observing reductions in viral titers in the intestine [8]. Furthermore, this partial, in contrast to complete, reduction of MuNoV infection in M cell-depleted mice suggests the presence of additional viral uptake routes across the intestinal barrier. Reovirus, a double-stranded RNA virus that infects enterocytes, similarly requires M cells for efficient infection [8], and other enteric pathogens also exploit M cells to infect the host [9]. Hence, we speculate that similar mechanisms are used by HuNoV to cross the intestinal epithelial barrier (Fig 1). Open in a separate window Fig 1 A working model for NoV intestinal infection. Multiple studies demonstrate that NoVs bind carbohydrates. These carbohydrates are expressed on enterocytes and secreted into the gut lumen. Furthermore, enteric bacteria can express similar carbohydrates. NoVs may bind to such carbohydrates in any of these contexts (1). NoVs are then transcytosed across the intestinal epithelium via M cells (2) and additional as-yet-to-be-identified pathways. Following transcytosis, NoVs infect dendritic cells, macrophages, and B cells (3). Depending on the species, infection can occur in the presence or absence of carbohydrates. Free carbohydrates or bacterially expressed carbohydrates may be cotranscytosed with the virus. Immune cell infection and putative concomitant viral-bacterial antigen presentation during NoV infections could have significant consequences on the nature and magnitude of antiviral immune responses.


Mbio | 2014

The Effect of Malnutrition on Norovirus Infection

Danielle Hickman; Melissa K. Jones; Shu Sheng Zhu; Ericka L. Kirkpatrick; David A. Ostrov; Xiaoyu Wang; Maria Ukhanova; Yijun Sun; Volker Mai; Marco Salemi; Stephanie M. Karst

ABSTRACT Human noroviruses are the primary cause of severe childhood diarrhea in the United States, and they are of particular clinical importance in pediatric populations in the developing world. A major contributing factor to the general increased severity of infectious diseases in these regions is malnutrition—nutritional status shapes host immune responses and the composition of the host intestinal microbiota, both of which can influence the outcome of pathogenic infections. In terms of enteric norovirus infections, mucosal immunity and intestinal microbes are likely to contribute to the infection outcome in substantial ways. We probed these interactions using a murine model of malnutrition and murine norovirus infection. Our results reveal that malnutrition is associated with more severe norovirus infections as defined by weight loss, impaired control of norovirus infections, reduced antiviral antibody responses, loss of protective immunity, and enhanced viral evolution. Moreover, the microbiota is dramatically altered by malnutrition. Interestingly, murine norovirus infection also causes changes in the host microbial composition within the intestine but only in healthy mice. In fact, the infection-associated microbiota resembles the malnutrition-associated microbiota. Collectively, these findings represent an extensive characterization of a new malnutrition model of norovirus infection that will ultimately facilitate elucidation of the nutritionally regulated host parameters that predispose to more severe infections and impaired memory immune responses. In a broad sense, this model may provide insight into the reduced efficacy of oral vaccines in malnourished hosts and the potential for malnourished individuals to act as reservoirs of emergent virus strains. IMPORTANCE Malnourished children in developing countries are susceptible to more severe infections than their healthy counterparts, in particular enteric infections that cause diarrhea. In order to probe the effects of malnutrition on an enteric infection in a well-controlled system devoid of other environmental and genetic variability, we studied norovirus infection in a mouse model. We have revealed that malnourished mice develop more severe norovirus infections and they fail to mount effective memory immunity to a secondary challenge. This is of particular importance because malnourished children generally mount less effective immune responses to oral vaccines, and we can now use our new model system to probe the immunological basis of this impairment. We have also determined that noroviruses evolve more readily in the face of malnutrition. Finally, both norovirus infection and malnutrition independently alter the composition of the intestinal microbiota in substantial and overlapping ways. Malnourished children in developing countries are susceptible to more severe infections than their healthy counterparts, in particular enteric infections that cause diarrhea. In order to probe the effects of malnutrition on an enteric infection in a well-controlled system devoid of other environmental and genetic variability, we studied norovirus infection in a mouse model. We have revealed that malnourished mice develop more severe norovirus infections and they fail to mount effective memory immunity to a secondary challenge. This is of particular importance because malnourished children generally mount less effective immune responses to oral vaccines, and we can now use our new model system to probe the immunological basis of this impairment. We have also determined that noroviruses evolve more readily in the face of malnutrition. Finally, both norovirus infection and malnutrition independently alter the composition of the intestinal microbiota in substantial and overlapping ways.


Diagnostic Microbiology and Infectious Disease | 2015

Multiplex gastrointestinal pathogen panels: implications for infection control

Kenneth H. Rand; Elizabeth E. Tremblay; Mari Hoidal; Lori B. Fisher; Katrina R. Grau; Stephanie M. Karst

In the acute care hospital inpatient setting, there is a wide variety of causes for both infectious and noninfectious diarrhea. However, without molecular assays for the wide range of agents causing gastroenteritis, there is no reliable way to determine which individuals should be placed in contact precautions, as recommended by CDC. We tested 158 inpatient diarrheal stool specimens with the FilmArray GI Panel (BioFire Diagnostics, Salt Lake City, UT, USA) that had been stored at -70°C after testing negative by conventional methods for Clostridium difficile and/or rotavirus. We found that 22.2% had at least 1 other infectious agent detected, and 60% of these patients were never placed in appropriate isolation for a total of 109 patient-days. In addition, 20.3% of patients with negative GI panel results could have been removed from isolation. Use of multiplex gastrointestinal panels may improve decisions regarding patient isolation and reduce nosocomial transmission.


Annual Review of Virology | 2015

Viruses in Rodent Colonies: Lessons Learned from Murine Noroviruses

Stephanie M. Karst; Christiane E. Wobus

Noroviruses (NoVs) are highly prevalent, positive-sense RNA viruses that infect a range of mammals, including humans and mice. Murine noroviruses (MuNoVs) are the most prevalent pathogens in biomedical research colonies, and they have been used extensively as a model system for human noroviruses (HuNoVs). Despite recent successes in culturing HuNoVs in the laboratory and a small animal host, studies of human viruses have inherent limitations. Thus, owing to its versatility, the MuNoV system-with its native host, reverse genetics, and cell culture systems-will continue to provide important insights into NoV and enteric virus biology. In the current review, we summarize recent findings from MuNoVs that increase our understanding of enteric virus pathogenesis and highlight similarities between human and murine NoVs that underscore the value of MuNoVs to inform studies of HuNoV biology. We also discuss the potential of endemic MuNoV infections to impact other disease models.

Collaboration


Dive into the Stephanie M. Karst's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott A. Tibbetts

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Vinjé

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge