Stephanie M. Wood
Karolinska University Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephanie M. Wood.
Journal of Innate Immunity | 2011
Yenan T. Bryceson; Samuel C. C. Chiang; Stephanie Darmanin; Cyril Fauriat; Heinrich Schlums; Jakob Theorell; Stephanie M. Wood
With an array of activating and inhibitory receptors, natural killer (NK) cells can specifically eradicate infected and transformed cells. Target cell killing is achieved through directed release of lytic granules. Recognition of target cells also induces production of chemokines and cytokines that can coordinate immune responses. Upon contact with susceptible cells, a multiplicity of activating receptors can induce signals for adhesion. Engagement of the integrin leukocyte functional antigen-1 mediates firm adhesion, provides signals for granule polarization and orchestrates the structure of an immunological synapse that facilitates efficient target cell killing. Other activating receptors apart from leukocyte functional antigen-1 signal for lytic granule exocytosis, a process that requires overcoming a threshold for activation of phospholipase C-γ, which in turn induces STIM1- and ORAI1-dependent store-operated Ca2+ entry as well as exocytosis mediated by the SNARE-containing protein syntaxin-11 and regulators thereof. Cytokine and chemokine release follows a different secretory pathway which also requires phospholipase C-γ activation and store-operated Ca2+ entry. Recent studies of human NK cells have provided insights into a hierarchy of effector functions that result in graded responses by NK cell populations. Responses display cellular heterogeneity and are influenced by environmental cues. This review highlights recent knowledge gained on the molecular pathways for and regulation of NK cell activation.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Andrea Maul-Pavicic; Samuel C. C. Chiang; Anne Rensing-Ehl; Birthe Jessen; Cyril Fauriat; Stephanie M. Wood; Sebastian Sjöqvist; Markus Hufnagel; Ilka Schulze; Thilo Bass; Wolfgang W. A. Schamel; Sebastian Fuchs; Hanspeter Pircher; Christie-Ann McCarl; Katsuhiko Mikoshiba; Klaus Schwarz; Stefan Feske; Yenan T. Bryceson; Stephan Ehl
Lymphocytes mediate cytotoxicity by polarized release of the contents of cytotoxic granules toward their target cells. Here, we have studied the role of the calcium release-activated calcium channel ORAI1 in human lymphocyte cytotoxicity. Natural killer (NK) cells obtained from an ORAI1-deficient patient displayed defective store-operated Ca2+ entry (SOCE) and severely defective cytotoxic granule exocytosis leading to impaired target cell lysis. Similar findings were obtained using NK cells from a stromal interaction molecule 1-deficient patient. The defect occurred at a late stage of the signaling process, because activation of leukocyte functional antigen (LFA)-1 and cytotoxic granule polarization were not impaired. Moreover, pharmacological inhibition of SOCE interfered with degranulation and target cell lysis by freshly isolated NK cells and CD8+ effector T cells from healthy donors. In addition to effects on lymphocyte cytotoxicity, synthesis of the chemokine macrophage inflammatory protein-1β and the cytokines TNF-α and IFN-γ on target cell recognition was impaired in ORAI1-deficient NK cells, as previously described for T cells. By contrast, NK cell cytokine production induced by combinations of IL-12, IL-15, and IL-18 was not impaired by ORAI1 deficiency. Taken together, these results identify a critical role for ORAI1-mediated Ca2+ influx in granule exocytosis for lymphocyte cytotoxicity as well as for cytokine production induced by target cell recognition.
Blood | 2010
Marie Meeths; Miriam Entesarian; Waleed Al-Herz; Samuel C. Chiang; Stephanie M. Wood; Wafa Al-Ateeqi; Francisco Almazan; Jaap Jan Boelens; Henrik Hasle; Marianne Ifversen; Bendik Lund; J. Merlijn van den Berg; Britt Gustafsson; Hans Hjelmqvist; Magnus Nordenskjöld; Yenan T. Bryceson; Jan-Inge Henter
Hemophagocytic lymphohistiocytosis (HLH) is an often-fatal hyperinflammatory syndrome characterized by fever, hepatosplenomegaly, cytopenia, and in some cases hemophagocytosis. Here, we describe the mutation analysis, clinical presentation, and functional analysis of natural killer (NK) cells in patients with mutations in STXBP2 encoding Munc18-2, recently associated with familial HLH type 5. The disease severity among 11 persons studied here was highly variable and, accordingly, age at diagnosis ranged from 2 months to 17 years. Remarkably, in addition to typical manifestations of familial HLH (FHL), the clinical findings included colitis, bleeding disorders, and hypogammaglobulinemia in approximately one-third of the patients. Laboratory analysis revealed impairment of NK-cell degranulation and cytotoxic capacity. Interleukin-2 stimulation of lymphocytes in vitro rescued the NK cell-associated functional defects. In conclusion, familial HLH type 5 is associated with a spectrum of clinical symptoms, which may be a reflection of impaired expression and function of Munc18-2 also in cells other than cytotoxic lymphocytes. Mutations in STXBP2 should thus also be considered in patients with clinical manifestations other than those typically associated with HLH.
Blood | 2009
Stephanie M. Wood; Marie Meeths; Samuel C. Chiang; Anne Grete Bechensteen; Jaap Jan Boelens; Carsten Heilmann; Hisanori Horiuchi; Steen Rosthøj; Olga Rutynowska; Jacek Winiarski; Jennifer L. Stow; Magnus Nordenskjöld; Jan-Inge Henter; Hans-Gustaf Ljunggren; Yenan T. Bryceson
The autosomal recessive immunodeficiencies Griscelli syndrome type 2 (GS2) and familial hemophagocytic lymphohistiocytosis type 3 (FHL3) are associated with loss-of-function mutations in RAB27A (encoding Rab27a) and UNC13D (encoding Munc13-4). Munc13-4 deficiency abrogates NK-cell release of perforin-containing lytic granules induced by signals for natural and antibody-dependent cellular cytotoxicity. We demonstrate here that these signals fail to induce degranulation in resting NK cells from Rab27a-deficient patients. In resting NK cells from healthy subjects, endogenous Rab27a and Munc13-4 do not colocalize extensively with perforin. However, phorbol 12-myristate 13-acetate and ionomycin stimulation or conjugation to susceptible target cells induced myosin-dependent colocalization of Rab27a and Munc13-4 with perforin. Unexpectedly, individual engagement of receptors leukocyte functional antigen-1, NKG2D, or 2B4 induced colocalization of Rab27a, but not Munc13-4, with perforin. Conversely, engagement of antibody-dependent cellular cytotoxicity receptor CD16 induced colocalization of Munc13-4, but not Rab27a, with perforin. Furthermore, colocalization of Munc13-4 with perforin was Rab27a-dependent. In conclusion, Rab27a or Munc13-4 recruitment to lytic granules is preferentially regulated by different receptor signals, demonstrating that individual target cell ligands regulate discrete molecular events for lytic granule maturation. The data suggest Rab27a facilitates degranulation at an early step yet highlight a reciprocal relationship between Munc13-4 and Rab27a for degranulation.
Journal of Immunology | 2010
Esther Reefman; Jason G. Kay; Stephanie M. Wood; Carolin Offenhäuser; Darren L. Brown; Sandrine Roy; Amanda C. Stanley; Pei Ching Low; Anthony P. Manderson; Jennifer L. Stow
NK cells are renowned for their ability to kill virally infected or transformed host cells by release of cytotoxic granules containing granzymes and perforin. NK cells also have important regulatory capabilities chiefly mediated by secretion of cytokines, such as IFN-γ and TNF. The secretory pathway for the release of cytokines in NK cells is unknown. In this study, we show localization and trafficking of IFN-γ and TNF in human NK cells in compartments and vesicles that do not overlap with perforin or other late endosome granule markers. Cytokines in post-Golgi compartments colocalized with markers of the recycling endosome (RE). REs are functionally required for cytokine release because inactivation of REs or mutation of RE-associated proteins Rab11 and vesicle-associated membrane protein-3 blocked cytokine surface delivery and release. In contrast, REs are not needed for release of perforin from preformed granules but may be involved at earlier stages of granule maturation. These findings suggest a new role for REs in orchestrating secretion in NK cells. We show that the cytokines IFN-γ and TNF are trafficked and secreted via a different pathway than perforin. Although perforin granules are released in a polarized fashion at lytic synapses, distinct carriers transport both IFN-γ and TNF to points all over the cell surface, including within the synapse, for nonpolarized release.
Blood | 2011
Marie Meeths; Samuel C. C. Chiang; Stephanie M. Wood; Miriam Entesarian; Heinrich Schlums; Benedicte Bang; Edvard Nordenskjold; Caroline Björklund; Gordana Jakovljević; Janez Jazbec; Henrik Hasle; Britt-Marie Holmqvist; Ljubica Rajić; Susan Pfeifer; Steen Rosthøj; Magnus Sabel; Toivo T. Salmi; Tore Stokland; Jacek Winiarski; Hans-Gustaf Ljunggren; Bengt Fadeel; Magnus Nordenskjöld; Jan-Inge Henter; Yenan T. Bryceson
Familial hemophagocytic lymphohistiocytosis (FHL) is an autosomal recessive, often-fatal hyperinflammatory disorder. Mutations in PRF1, UNC13D, STX11, and STXBP2 are causative of FHL2, 3, 4, and 5, respectively. In a majority of suspected FHL patients from Northern Europe, sequencing of exons and splice sites of such genes required for lymphocyte cytotoxicity revealed no or only monoallelic UNC13D mutations. Here, in 21 patients, we describe 2 pathogenic, noncoding aberrations of UNC13D. The first is a point mutation localized in an evolutionarily conserved region of intron 1. This mutation selectively impairs UNC13D transcription in lymphocytes, abolishing Munc13-4 expression. The second is a 253-kb inversion straddling UNC13D, affecting the 3-end of the transcript and likewise abolishing Munc13-4 expression. Carriership of the intron 1 mutation was found in patients across Europe, whereas carriership of the inversion was limited to Northern Europe. Notably, the latter aberration represents the first description of an autosomal recessive human disease caused by an inversion. These findings implicate an intronic sequence in cell-type specific expression of Munc13-4 and signify variations outside exons and splice sites as a common cause of FHL3. Based on these data, we propose a strategy for targeted sequencing of evolutionary conserved noncoding regions for the diagnosis of primary immunodeficiencies.
Methods of Molecular Biology | 2010
Yenan T. Bryceson; Cyril Fauriat; João M. Nunes; Stephanie M. Wood; Niklas K. Björkström; Eric O. Long; Hans-Gustaf Ljunggren
Natural killer (NK) cells are a subset of lymphocytes that contribute to innate immunity through cytokine secretion and target cell lysis. NK cell function is regulated by a multiplicity of activating and inhibitory receptors. The advance in instrumentation for multi-color flow cytometry and the generation of specific mAbs for different epitopes related to phenotypic and functional parameters have facilitated our understanding of NK cell responses. Here, we provide protocols for flow cytometric evaluation of degranulation and cytokine production by human NK cells from peripheral blood at the single-cell level. In addition to offering insight into the regulation of human NK cell responses, these techniques are applicable to the assessment of various clinical conditions, including the diagnosis of immunodeficiency syndromes.
Pediatric Blood & Cancer | 2009
Marie Meeths; Yenan T. Bryceson; Eva Rudd; Chengyun Zheng; Stephanie M. Wood; Kim Göransdotter Ramme; Karin Beutel; Henrik Hasle; Carsten Heilmann; Kjell Hultenby; Hans-Gustaf Ljunggren; Bengt Fadeel; Magnus Nordenskjöld; Jan-Inge Henter
Griscelli syndrome type 2 (GS2) is an autosomal‐recessive immunodeficiency caused by mutations in RAB27A, clinically characterized by partial albinism and haemophagocytic lymphohistocytosis (HLH). We evaluated the frequency of RAB27A mutations in 21 unrelated patients with haemophagocytic syndromes without mutations in familial HLH (FHL) causing genes or an established diagnosis of GS2. In addition, we report three patients with known GS2. Moreover, neurological involvement and RAB27A mutations in previously published patients with genetically verified GS2 are reviewed.
Journal of Medical Genetics | 2007
Eva Rudd; Yenan T. Bryceson; Chengyun Zheng; Josefine Edner; Stephanie M. Wood; Kim Göransdotter Ramme; Sofie Gavhed; Aytemiz Gurgey; Marit Hellebostad; AnneGrete Bechensteen; Hans-Gustaf Ljunggren; Bengt Fadeel; Magnus Nordenskjöld; Jan-Inge Henter
Objective: Familial haemophagocytic lymphohistiocytosis (FHL) is a fatal disorder of immune dysregulation with defective cytotoxic lymphocyte function. Disease-causing mutations have been identified in the genes encoding perforin (PRF1), syntaxin-11 (STX11), and Munc13-4 (UNC13D). We screened for UNC13D mutations and studied clinical and functional implications of such mutations in a well defined patient cohort. Methods: Sequencing of UNC13D was performed in 38 FHL patients from 34 FHL families in which PRF1 and STX11 mutations had been excluded. Results: We identified six different mutations affecting altogether 9/38 individuals (24%) in 6/34 (18%) unrelated PRF1/STX11-negative families. Four novel mutations were revealed; two homozygous nonsense mutations (R83X and W382X), one splice mutation (exon 28), and one missense mutation (R928P). In addition, two known mutations were identified (R214X and a deletion resulting in a frame-shift starting at codon 782). There was considerable variation in the age at diagnosis, ranging from time of birth to 14 years (median 69 days). Three of nine patients (33%) developed central nervous system (CNS) symptoms. Natural killer (NK) cell activity was impaired in all four patients studied. Defective cytotoxic lymphocyte degranulation was evident in the two patients investigated, more pronounced in the patient with onset during infancy than in the patient with adolescent onset. Conclusions: Biallelic UNC13D mutations were found in 18% of the PRF1/STX11-negative FHL families. Impairment of NK cell degranulation was less pronounced in a patient with adolescent onset. FHL should be considered not only in infants but also in adolescents, and possibly young adults, presenting with fever, splenomegaly, cytopenia, hyperferritinaemia, and/or CNS symptoms.
Cellular and Molecular Life Sciences | 2011
Stephanie M. Wood; Hans-Gustaf Ljunggren; Yenan T. Bryceson
Rare human primary immunodeficiency disorders with extreme susceptibility to infections in infancy have provided important insights into immune function. Increasingly, however, primary immunodeficiencies are also recognized as a cause of other more common, often discrete, infectious susceptibilities. In a wider context, loss-of-function mutations in immune genes may also cause disorders of immune regulation and predispose to cancer. Here, we review the associations between human diseases and mutations in genetic elements affecting natural killer (NK) cell development and function. Although many such genetic aberrations significantly reduce NK cell numbers or severely impair NK cell responses, inferences regarding the role of NK cells in disease are confounded by the fact that most mutations also affect the development or function of other cell types. Still, data suggest an important role for NK cells in diseases ranging from classical immunodeficiency syndromes with susceptibility to viruses and other intracellular pathogens to cancer, autoimmunity, and hypersensitivity reactions.