Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephanie Ma is active.

Publication


Featured researches published by Stephanie Ma.


Oncogene | 2008

CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway

Stephanie Ma; Terence K.W. Lee; Bo-Jian Zheng; Kwok Wah Chan; Xin Yuan Guan

The recent discovery of cancer stem cells (CSCs) has played a pivotal role in changing our view of carcinogenesis and chemotherapy. Based on this concept, CSCs are responsible for the formation and growth of neoplastic tissue and are naturally resistant to chemotherapy, explaining why traditional chemotherapies can initially shrink a tumor but fails to eradicate it in full, allowing eventual recurrence. Recently, we identified a CSC population in hepatocellular carcinoma (HCC) characterized by their CD133 phenotype. However, the molecular mechanism by which it escapes conventional therapies remains unknown. Here, we examined the sensitivity of these cells to chemotherapeutic agents (doxorubicin and fluorouracil) and the possible mechanistic pathway by which resistance may be regulated. Purified CD133+ HCC cells isolated from human HCC cell line and xenograft mouse models survived chemotherapy in increased proportions relative to most tumor cells which lack the CD133 phenotype; the underlying mechanism of which required the preferential expression of survival proteins involved in the Akt/PKB and Bcl-2 pathway. Treatment of CD133+ HCC cells with an AKT1 inhibitor, specific to the Akt/PKB pathway, significantly reduced the expression of the survival proteins that was normally expressed endogenously. In addition, treatment of unsorted HCC cells with both anticancer drugs in vitro significantly enriched the CD133+ subpopulation. In conclusion, our results show that CD133+ HCC cells contribute to chemoresistance through preferential activation of Akt/PKB and Bcl-2 cell survival response. Targeting of this specific survival signaling pathway in CD133+ HCC CSCs may provide a novel therapeutic model for the disease.


Molecular Cancer Research | 2008

Aldehyde Dehydrogenase Discriminates the CD133 Liver Cancer Stem Cell Populations

Stephanie Ma; Wah Chan Kwok; Terence Kin-Wah Lee; Ho Tang Kwan; Jana Yim–Hung Wo; Bo-Jian Zheng; Xin Yuan Guan

Recent efforts in our study of cancer stem cells (CSC) in hepatocellular carcinoma (HCC) have led to the identification of CD133 as a prominent HCC CSC marker. Findings were based on experiments done on cell lines and xenograft tumors where expression of CD133 was detected at levels as high as 65%. Based on the CSC theory, CSCs are believed to represent only a minority number of the tumor mass. This is indicative that our previously characterized CD133+ HCC CSC population is still heterogeneous, consisting of perhaps subsets of cells with differing tumorigenic potential. We hypothesized that it is possible to further enrich the CSC population by means of additional differentially expressed markers. Using a two-dimensional PAGE approach, we compared protein profiles between CD133+ and CD133− subpopulations isolated from Huh7 and PLC8024 and identified aldehyde dehydrogenase 1A1 as one of the proteins that are preferentially expressed in the CD133+ subfraction. Analysis of the expression of several different ALDH isoforms and ALDH enzymatic activity in liver cell lines found ALDH to be positively correlated with CD133 expression. Dual-color flow cytometry analysis found the majority of ALDH+ to be CD133+, yet not all CD133+ HCC cells were ALDH+. Subsequent studies on purified subpopulations found CD133+ALDH+ cells to be significantly more tumorigenic than their CD133−ALDH+ or CD133−ALDH− counterparts, both in vitro and in vivo. These data, combined with those from our previous work, reveal the existence of a hierarchical organization in HCC bearing tumorigenic potential in the order of CD133+ALDH+ > CD133+ALDH− > CD133−ALDH−. ALDH, expressed along CD133, can more specifically characterize the tumorigenic liver CSC population. (Mol Cancer Res 2008;6(7):1146–53)


Cell Stem Cell | 2010

miR-130b Promotes CD133+ Liver Tumor-Initiating Cell Growth and Self-Renewal via Tumor Protein 53-Induced Nuclear Protein 1

Stephanie Ma; Kwan Ho Tang; Yuen Piu Chan; Terence K. Lee; Pak Shing Kwan; Antonia Castilho; Irene Ng; Kwan Man; Nathalie Wong; Ka Fai To; Bo-Jian Zheng; Paul B.S. Lai; Chung Mau Lo; Kwok Wah Chan; Xin Yuan Guan

A novel paradigm in tumor biology suggests that cancer growth is driven by stem-like cells within a tumor, called tumor-initiating cells (TICs) or cancer stem cells (CSCs). Here we describe the identification and characterization of such cells from hepatocellular carcinoma (HCC) using the marker CD133. CD133 accounts for approximately 1.3%-13.6% of the cells in the bulk tumor of human primary HCC samples. When compared with their CD133⁻ counterparts, CD133(+) cells not only possess the preferential ability to form undifferentiated tumor spheroids in vitro but also express an enhanced level of stem cell-associated genes, have a greater ability to form tumors when implanted orthotopically in immunodeficient mice, and can be serially passaged into secondary animal recipients. Xenografts resemble the original human tumor and maintain a similar percentage of tumorigenic CD133(+) cells. Quantitative PCR analysis of 41 separate HCC tissue specimens with follow-up data found that CD133(+) tumor cells were frequently detected at low quantities in HCC, and their presence was also associated with worse overall survival and higher recurrence rates. Subsequent differential microRNA expression profiling of CD133(+) and CD133⁻ cells from human HCC clinical specimens and cell lines identified an overexpression of miR-130b in CD133(+) TICs. Functional studies on miR-130b lentiviral-transduced CD133⁻ cells demonstrated superior resistance to chemotherapeutic agents, enhanced tumorigenicity in vivo, and a greater potential for self renewal. Conversely, antagonizing miR-130b in CD133(+) TICs yielded an opposing effect. The increased miR-130b paralleled the reduced TP53INP1, a known miR-130b target. Silencing TP53INP1 in CD133⁻ cells enhanced both self renewal and tumorigenicity in vivo. Collectively, miR-130b regulates CD133(+) liver TICs, in part, via silencing TP53INP1.


Hepatology | 2012

CD133 + liver tumor-initiating cells promote tumor angiogenesis, growth, and self-renewal through neurotensin/interleukin-8/CXCL1 signaling

Kwan Ho Tang; Stephanie Ma; Terence K. Lee; Yuen Piu Chan; Pak Shing Kwan; Carol Man Tong; Irene O. Ng; Kwan Man; Ka Fai To; Paul B.S. Lai; Chung Mau Lo; Xin Yuan Guan; Kwok Wah Chan

A novel theory in the field of tumor biology postulates that cancer growth is driven by a population of stem‐like cells, called tumor‐initiating cells (TICs). We previously identified a TIC population derived from hepatocellular carcinoma (HCC) that is characterized by membrane expression of CD133. Here, we describe a novel mechanism by which these cells mediate tumor growth and angiogenesis by systematic comparison of the gene expression profiles between sorted CD133 liver subpopulations through genome‐wide microarray analysis. A significantly dysregulated interleukin‐8 (IL‐8) signaling network was identified in CD133+ liver TICs obtained from HCC clinical samples and cell lines. IL‐8 was found to be overexpressed at both the genomic and proteomic levels in CD133+ cells isolated from HCC cell lines or clinical samples. Functional studies found enhanced IL‐8 secretion in CD133+ liver TICs to exhibit a greater ability to self‐renew, induce tumor angiogenesis, and initiate tumors. In further support of these observations, IL‐8 repression in CD133+ liver TICs by knockdown or neutralizing antibody abolished these effects. Subsequent studies of the IL‐8 functional network identified neurotensin (NTS) and CXCL1 to be preferentially expressed in CD133+ liver TICs. Addition of exogenous NTS resulted in concomitant up‐regulation of IL‐8 and CXCL1 with simultaneous activation of p‐ERK1/2 and RAF‐1, both key components of the mitogen‐activated protein kinase (MAPK) pathway. Enhanced IL‐8 secretion by CD133+ liver TICs can in turn activate an IL‐8‐dependent feedback loop that signals through the MAPK pathway. Further, in its role as a liver TIC marker CD133 also plays a functional part in regulating tumorigenesis of liver TICs by way of regulating NTS, IL‐8, CXCL1, and MAPK signaling. Conclusion: CD133+ liver TICs promote angiogenesis, tumorigenesis, and self‐renewal through NTS‐induced activation of the IL‐8 signaling cascade. (Hepatology 2012)


Journal of Clinical Investigation | 2010

CHD1L promotes hepatocellular carcinoma progression and metastasis in mice and is associated with these processes in human patients.

Leilei Chen; Tim Hon Man Chan; Yun Fei Yuan; Liang Hu; Jun Huang; Stephanie Ma; Jian Wang; Sui Sui Dong; Kwan Ho Tang; Dan Xie; Yan Li; Xin Yuan Guan

Chromodomain helicase/ATPase DNA binding protein 1-like gene (CHD1L) is a recently identified oncogene localized at 1q21, a frequently amplified region in hepatocellular carcinoma (HCC). To explore its oncogenic mechanisms, we set out to identify CHD1L-regulated genes using a chromatin immunoprecipitation-based (ChIP-based) cloning strategy in a human HCC cell line. We then further characterized 1 identified gene, ARHGEF9, which encodes a specific guanine nucleotide exchange factor (GEF) for the Rho small GTPase Cdc42. Overexpression of ARHGEF9 was detected in approximately half the human HCC samples analyzed and positively correlated with CHD1L overexpression. In vitro and in vivo functional studies in mice showed that CHD1L contributed to tumor cell migration, invasion, and metastasis by increasing cell motility and inducing filopodia formation and epithelial-mesenchymal transition (EMT) via ARHGEF9-mediated Cdc42 activation. Silencing ARHGEF9 expression by RNAi effectively abolished the invasive and metastatic abilities of CHD1L in mice. Furthermore, investigation of clinical HCC specimens showed that CHD1L and ARHGEF9 were markedly overexpressed in metastatic HCC tissue compared with healthy tissue. Increased expression of CHD1L was often observed at the invasive front of HCC tumors and correlated with venous infiltration, microsatellite tumor nodule formation, and poor disease-free survival. These findings suggest that CHD1L-ARHGEF9-Cdc42-EMT might be a novel pathway involved in HCC progression and metastasis.


Cancer Research | 2007

Lupeol Suppresses Cisplatin-Induced Nuclear Factor-κB Activation in Head and Neck Squamous Cell Carcinoma and Inhibits Local Invasion and Nodal Metastasis in an Orthotopic Nude Mouse Model

Terence K. Lee; Ronnie Tung-Ping Poon; Jana Y. Wo; Stephanie Ma; Xin Yuan Guan; Jeffrey N. Myers; Peter Altevogt; Anthony Po Wing Yuen

A poor prognosis in head and neck squamous cell carcinoma (HNSCC) patients is commonly associated with the presence of regional metastasis. Cisplatin-based chemotherapy concurrent with radiation therapy is commonly used in the treatment of locally advanced HNSCC. However, the result is dismal due to common acquisition of chemoresistance and radioresistance. Epidemiologic studies have shown the importance of dietary substances in the prevention of HNSCC. Here, we found that lupeol, a triterpene found in fruits and vegetables, selectively induced substantial HNSCC cell death but exhibited only a minimal effect on a normal tongue fibroblast cell line in vitro. Down-regulation of NF-kappaB was identified as the major mechanism of the anticancer properties of lupeol against HNSCC. Lupeol alone was not only found to suppress tumor growth but also to impair HNSCC cell invasion by reversal of the NF-kappaB-dependent epithelial-to-mesenchymal transition. Lupeol exerted a synergistic effect with cisplatin, resulting in chemosensitization of HNSCC cell lines with high NF-kappaB activity in vitro. In in vivo studies, using an orthotopic metastatic nude mouse model of oral tongue squamous cell carcinoma, lupeol at a dose of 2 mg/animal dramatically decreased tumor volume and suppressed local metastasis, which was more effective than cisplatin alone. Lupeol exerted a significant synergistic cytotoxic effect when combined with low-dose cisplatin without side effects. Our results suggest that lupeol may be an effective agent either alone or in combination for treatment of advanced tumors.


Cancer Research | 2013

A CD90+ Tumor-Initiating Cell Population with an Aggressive Signature and Metastatic Capacity in Esophageal Cancer

Kwan Ho Tang; Yong–Dong Dai; Man Tong; Yuen Piu Chan; Pak Shing Kwan; Li Fu; Yan Ru Qin; Sai Wah Tsao; Hong Lok Lung; Maria Li Lung; Daniel K. Tong; Simon Law; Kwok Wah Chan; Stephanie Ma; Xin Yuan Guan

Tumor-initiating cells (TIC), also known as cancer stem cells, are regarded widely as a specific subpopulation of cells needed for cancer initiation and progression. TICs have yet to be identified in esophageal tumors that have an increasing incidence in developed countries. Here, we report a CD90(+) cell population found in esophageal squamous cell carcinoma (ESCC), which is endowed with stem cell-like properties and high tumorigenic and metastatic potential. mRNA profiling of these cells suggested pathways through which they drive tumor growth and metastasis, with deregulation of an Ets-1/MMP signaling pathway and epithelial-mesenchymal transition figuring prominently. These cells possessed higher self-renewal activity and were sufficient for tumor growth, differentiation, metastasis, and chemotherapeutic resistance. CD90(+) TICs were isolated and characterized from ESCC clinical specimens as well as ESCC cell lines. In freshly resected clinical specimens, they represented a rare cell population, the levels of which correlated with strong family histories and lymph node metastasis. Our results prompt further study of this CD90(+) population of esophageal TICs as potential therapeutic targets.


International Journal of Cancer | 2011

Gamma-tocotrienol as an effective agent in targeting prostate cancer stem cell-like population.

Sze Ue Luk; Wei Ney Yap; Yung-Tuen Chiu; Davy Tw Lee; Stephanie Ma; Terence Kin-Wah Lee; Raja S. Vasireddy; Yong-Chuan Wong; Yick-Pang Ching; Colleen C. Nelson; Yee Leng Yap; Ming-Tat Ling

Emerging evidence supports that prostate cancer originates from a rare subpopulation of cells, namely prostate cancer stem cells (CSCs). Conventional therapies for prostate cancer are believed to mainly target the majority of differentiated tumor cells but spare CSCs, which may account for the subsequent disease relapse after treatment. Therefore, successful elimination of CSCs may be an effective strategy to achieve complete remission from this disease. Gamma‐tocotrienols (γ‐T3) is one of the vitamin‐E constituents, which have been shown to have anticancer effects against a wide range of human cancers. Recently, we have reported that γ‐T3 treatment not only inhibits prostate cancer cell invasion but also sensitizes the cells to docetaxel‐induced apoptosis, suggesting that γ‐T3 may be an effective therapeutic agent against advanced stage prostate cancer. Here, we demonstrate for the first time that γ‐T3 can downregulate the expression of prostate CSC markers (CD133/CD44) in androgen‐independent prostate cancer cell lines (PC‐3 and DU145), as evident from Western blotting analysis. Meanwhile, the spheroid formation ability of the prostate cancer cells was significantly hampered by γ‐T3 treatment. In addition, pretreatment of PC‐3 cells with γ‐T3 was found to suppress tumor initiation ability of the cells. More importantly, although CD133‐enriched PC‐3 cells were highly resistant to docetaxel treatment, these cells were as sensitive to γ‐T3 treatment as the CD133‐depleted population. Our data suggest that γ‐T3 may be an effective agent in targeting prostate CSCs, which may account for its anticancer and chemosensitizing effects reported in previous studies.


Liver International | 2009

Liver cancer stem cells: implications for a new therapeutic target.

Terence Kin-Wah Lee; Antonia Castilho; Stephanie Ma; Irene Oi-Lin Ng

Hepatocellular carcinoma (HCC) is an aggressive tumour with a poor prognosis. Current therapeutic strategies against this disease target mostly rapidly growing differentiated tumour cells. However, the result is often dismal due to the chemoresistant nature of this tumour type. Recent research efforts on stem cells and cancer biology have shed light on new directions for the eradication of cancer stem cells (CSCs) in HCC. The liver is a distinctive organ with the ability of tissue renewal in response to injury. Based on the hypothesis that cancer development is derived from the hierarchy of the stem cell system, we will briefly discuss the origin of liver stem cells and its relation to HCC development. We will also summarize the current CSC markers in HCC and discuss their relevance to the treatment of this deadly disease.


Hepatology | 2014

Maelstrom promotes hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition by way of Akt/GSK-3β/Snail signaling

Lulu Liu; Yongdong Dai; Jinna Chen; Tingting Zeng; Yan Li; Leilei Chen; Ying Hui Zhu; Jiangchao Li; Stephanie Ma; Dan Xie; Yun Fei Yuan; Xin Yuan Guan

Amplification of 1q is one of the most frequent chromosomal alterations in human hepatocellular carcinoma (HCC). In this study we identified and characterized a novel oncogene, Maelstrom (MAEL), at 1q24. Amplification and overexpression of MAEL was frequently detected in HCCs and significantly associated with HCC recurrence (P = 0.031) and poor outcome (P = 0.001). Functional study demonstrated that MAEL promoted cell growth, cell migration, and tumor formation in nude mice, all of which were effectively inhibited when MAEL was silenced with short hairpin RNA (shRNAs). Further study found that MAEL enhanced AKT activity with subsequent GSK‐3β phosphorylation and Snail stabilization, finally inducing epithelial‐mesenchymal transition (EMT) and promoting tumor invasion and metastasis. In addition, MAEL up‐regulated various stemness‐related genes, multidrug resistance genes, and cancer stem cell (CSC) surface markers at the messenger RNA (mRNA) level. Functional study demonstrated that overexpression of MAEL increased self‐renewal, chemoresistance, and tumor metastasis. Conclusion: MAEL is an oncogene that plays an important role in the development and progression of HCC by inducing EMT and enhancing the stemness of HCC. (Hepatology 2014;59:531–543)

Collaboration


Dive into the Stephanie Ma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Man Tong

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terence K. Lee

Hong Kong Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Kwan Ho Tang

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kai Yu Ng

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge