Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephanie Rigaud is active.

Publication


Featured researches published by Stephanie Rigaud.


Nature | 2006

XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome

Stephanie Rigaud; Marie-Claude Fondanèche; Nathalie Lambert; Benoit Pasquier; Véronique Mateo; Pauline Soulas; Lionel Galicier; Françoise Le Deist; Frédéric Rieux-Laucat; Patrick Revy; Alain Fischer; Geneviève de Saint Basile; Sylvain Latour

The homeostasis of the immune response requires tight regulation of the proliferation and apoptosis of activated lymphocytes. In humans, defects in immune homeostasis result in lymphoproliferation disorders including autoimmunity, haemophagocytic lymphohystiocytosis and lymphomas. The X-linked lymphoproliferative syndrome (XLP) is a rare, inherited immunodeficiency that is characterized by lymphohystiocytosis, hypogammaglobulinaemia and lymphomas, and that usually develops in response to infection with Epstein–Barr virus (EBV). Mutations in the signalling lymphocyte activation molecule (SLAM)-associated protein SAP, a signalling adaptor molecule, underlie 60% of cases of familial XLP. Here, we identify mutations in the gene that encodes the X-linked inhibitor-of-apoptosis XIAP (also termed BIRC4) in patients with XLP from three families without mutations in SAP. These mutations lead to defective expression of XIAP. We show that apoptosis of lymphocytes from XIAP-deficient patients is enhanced in response to various stimuli including the T-cell antigen receptor (TCR)–CD3 complex, the death receptor CD95 (also termed Fas or Apo-1) and the TNF-associated apoptosis-inducing ligand receptor (TRAIL-R). We also found that XIAP-deficient patients, like SAP-deficient patients, have low numbers of natural killer T-lymphocytes (NKT cells), indicating that XIAP is required for the survival and/or differentiation of NKT cells. The observation that XIAP-deficiency and SAP-deficiency are both associated with a defect in NKT cells strengthens the hypothesis that NKT cells have a key role in the immune response to EBV. Furthermore, by identifying an XLP immunodeficiency that is caused by mutations in XIAP, we show that XIAP is a potent regulator of lymphocyte homeostasis in vivo.


Blood | 2011

Clinical similarities and differences of patients with X-linked lymphoproliferative syndrome type 1 (XLP-1/SAP-deficiency) versus type 2 (XLP-2/XIAP-deficiency)

Jana Pachlopnik Schmid; Danielle Canioni; Despina Moshous; Fabien Touzot; Nizar Mahlaoui; Fabian Hauck; Hirokazu Kanegane; Eduardo López-Granados; Ester Mejstrikova; Isabelle Pellier; Lionel Galicier; Claire Galambrun; Vincent Barlogis; Pierre Bordigoni; Alain Fourmaintraux; M. Hamidou; Alain Dabadie; Françoise Le Deist; Filomeen Haerynck; Marie Ouachée-Chardin; Pierre-Simon Rohrlich; Jean-Louis Stephan; Christelle Lenoir; Stephanie Rigaud; Nathalie Lambert; Michèle Milili; Claudin Schiff; Helen Chapel; Capucine Picard; Geneviève de Saint Basile

X-linked lymphoproliferative syndromes (XLP) are primary immunodeficiencies characterized by a particular vulnerability toward Epstein-Barr virus infection, frequently resulting in hemophagocytic lymphohistiocytosis (HLH). XLP type 1 (XLP-1) is caused by mutations in the gene SH2D1A (also named SAP), whereas mutations in the gene XIAP underlie XLP type 2 (XLP-2). Here, a comparison of the clinical phenotypes associated with XLP-1 and XLP-2 was performed in cohorts of 33 and 30 patients, respectively. HLH (XLP-1, 55%; XLP-2, 76%) and hypogammaglobulinemia (XLP-1, 67%; XLP-2, 33%) occurred in both groups. Epstein-Barr virus infection in XLP-1 and XLP-2 was the common trigger of HLH (XLP-1, 92%; XLP-2, 83%). Survival rates and mean ages at the first HLH episode did not differ for both groups, but HLH was more severe with lethal outcome in XLP-1 (XLP-1, 61%; XLP-2, 23%). Although only XLP-1 patients developed lymphomas (30%), XLP-2 patients (17%) had chronic hemorrhagic colitis as documented by histopathology. Recurrent splenomegaly often associated with cytopenia and fever was preferentially observed in XLP-2 (XLP-1, 7%; XLP-2, 87%) and probably represents minimal forms of HLH as documented by histopathology. This first phenotypic comparison of XLP subtypes should help to improve the diagnosis and the care of patients with XLP conditions.


Nature | 2013

Themis sets the signal threshold for positive and negative selection in T-cell development

Guo Fu; Javier Casas; Stephanie Rigaud; Vasily Rybakin; Florence Lambolez; Joanna Brzostek; John A. H. Hoerter; Wolfgang Paster; Oreste Acuto; Hilde Cheroutre; Karsten Sauer; Nicholas R. J. Gascoigne

Development of a self-tolerant T-cell receptor (TCR) repertoire with the potential to recognize the universe of infectious agents depends on proper regulation of TCR signalling. The repertoire is whittled down during T-cell development in the thymus by the ability of quasi-randomly generated TCRs to interact with self-peptides presented by major histocompatibility complex (MHC) proteins. Low-affinity TCR interactions with self-MHC proteins generate weak signals that initiate ‘positive selection’, causing maturation of CD4- or CD8αβ-expressing ‘single-positive’ thymocytes from CD4+CD8αβ+ ‘double-positive’ precursors. These develop into mature naive T cells of the secondary lymphoid organs. TCR interaction with high-affinity agonist self-ligands results in ‘negative selection’ by activation-induced apoptosis or ‘agonist selection’ of functionally differentiated self-antigen-experienced T cells. Here we show that positive selection is enabled by the ability of the T-cell-specific protein Themis to specifically attenuate TCR signal strength via SHP1 recruitment and activation in response to low- but not high-affinity TCR engagement. Themis acts as an analog-to-digital converter translating graded TCR affinity into clear-cut selection outcome. By dampening mild TCR signals Themis increases the affinity threshold for activation, enabling positive selection of T cells with a naive phenotype in response to low-affinity self-antigens.


Blood | 2011

Human X-linked variable immunodeficiency caused by a hypomorphic mutation in XIAP in association with a rare polymorphism in CD40LG

Stephanie Rigaud; Eduardo López-Granados; Sophie Sibéril; Geoffrey Gloire; Nathalie Lambert; Christelle Lenoir; Cindy Synaeve; Maria Stacey; Lars Fugger; Jean-Louis Stephan; Alain Fischer; Capucine Picard; Anne Durandy; Helen Chapel; Sylvain Latour

The present study focuses on a large family with an X-linked immunodeficiency in which there are variable clinical and laboratory phenotypes, including recurrent viral and bacterial infections, hypogammaglobulinemia, Epstein-Barr virus-driven lymphoproliferation, splenomegaly, colitis, and liver disease. Molecular and genetic analyses revealed that affected males were carriers of a hypomorphic hemizygous mutation in XIAP (XIAP(G466X)) that cosegregated with a rare polymorphism in CD40LG (CD40 ligand(G219R)). These genes are involved in the X-linked lymphoproliferative syndrome 2 and the X-linked hyper-IgM syndrome, respectively. Single expression of XIAP(G466X) or CD40L(G219R) had no or minimal effect in vivo, although in vitro, they lead to altered functional activities of their gene products, which suggests that the combination of XIAP and CD40LG mutations contributed to the expression of clinical manifestations observed in affected individuals. Our report of a primary X-linked immunodeficiency of oligogenic origin emphasizes that primary immunodeficiencies are not caused by a single defective gene, which leads to restricted manifestations, but are likely to be the result of an interplay between several genetic determinants, which leads to more variable clinical phenotypes.


Science Signaling | 2011

Protein Kinase C η Is Required for T Cell Activation and Homeostatic Proliferation

Guo Fu; Jianfang Hu; Nathalie Niederberger-Magnenat; Vasily Rybakin; Javier Casas; Pia P. Yachi; Stephanie Feldstein; Bo Ma; John A. H. Hoerter; Jeanette Ampudia; Stephanie Rigaud; Florence Lambolez; Amanda L. Gavin; Karsten Sauer; Hilde Cheroutre; Nicholas R. J. Gascoigne

Studies of knockout mice delineate specific and overlapping roles for different protein kinase C isoforms in T cell biology. PKC Isoform Specificity in T Cells When a T cell encounters an antigen-presenting cell (APC), protein kinase C θ (PKCθ) is recruited to the immunological synapse, the interface between the T cell and the APC, where it is thought to mediate co-receptor signaling during T cell activation. Although PKCθ is the most abundant PKC isoform in T cells, thymocyte development in PKCθ-deficient mice is only mildly affected. Fu et al. investigated a role for PKCη, which, unlike PKCθ, increases in abundance upon T cell activation. The authors found that similar to PKCθ, PKCη was recruited to the immunological synapse upon T cell activation and that both isoforms had some overlapping functions. However, PKCη was required for antigen-dependent activation, and loss of PKCη, but not that of PKCθ, resulted in decreased homeostatic proliferation of T cells. Together, these data suggest that PKCη plays critical roles in T cells. Protein kinase C η (PKCη) is abundant in T cells and is recruited to the immunological synapse that is formed between a T cell and an antigen-presenting cell; however, its function in T cells is unknown. We showed that PKCη was required for the activation of mature CD8+ T cells through the T cell receptor. Compared with wild-type T cells, PKCη−/− T cells showed poor proliferation in response to antigen stimulation, a trait shared with T cells deficient in PKCθ, which is the most abundant PKC isoform in T cells and was thought to be the only PKC isoform with a specific role in T cell activation. In contrast, only PKCη-deficient T cells showed defective homeostatic proliferation, which requires self-antigen recognition. PKCη was dispensable for thymocyte development; however, thymocytes from mice doubly deficient in PKCη and PKCθ exhibited poor development, indicating some redundancy between the PKC isoforms. Deficiency in PKCη or PKCθ had opposing effects on the relative numbers of CD4+ and CD8+ T cells. PKCη−/− mice had a higher ratio of CD4+ to CD8+ T cells compared to that of wild-type mice, whereas PKCθ−/− mice had a lower ratio. Mice deficient in both isoforms exhibited normal cell ratios. Together, these data suggest that PKCη shares some redundant roles with PKCθ in T cell biology and also performs nonredundant functions that are required for T cell homeostasis and activation.


Blood | 2015

IP3 3-kinase B controls hematopoietic stem cell homeostasis and prevents lethal hematopoietic failure in mice.

Sabine Siegemund; Stephanie Rigaud; Claire Conche; Broaten B; Lana Schaffer; Luise Westernberg; Karsten Sauer

Tight regulation of hematopoietic stem cell (HSC) homeostasis ensures lifelong hematopoiesis and prevents blood cancers. The mechanisms balancing HSC quiescence with expansion and differentiation into hematopoietic progenitors are incompletely understood. Here, we identify Inositol-trisphosphate 3-kinase B (Itpkb) as an essential regulator of HSC homeostasis. Young Itpkb(-/-) mice accumulated phenotypic HSC, which were less quiescent and proliferated more than wild-type (WT) controls. Itpkb(-/-) HSC downregulated quiescence and stemness associated, but upregulated activation, oxidative metabolism, protein synthesis, and lineage associated messenger RNAs. Although they had normal-to-elevated viability and no significant homing defects, Itpkb(-/-) HSC had a severely reduced competitive long-term repopulating potential. Aging Itpkb(-/-) mice lost hematopoietic stem and progenitor cells and died with severe anemia. WT HSC normally repopulated Itpkb(-/-) hosts, indicating an HSC-intrinsic Itpkb requirement. Itpkb(-/-) HSC showed reduced colony-forming activity and increased stem-cell-factor activation of the phosphoinositide-3-kinase (PI3K) effectors Akt/mammalian/mechanistic target of rapamycin (mTOR). This was reversed by treatment with the Itpkb product and PI3K/Akt antagonist IP4. Transcriptome changes and biochemistry support mTOR hyperactivity in Itpkb(-/-) HSC. Treatment with the mTOR-inhibitor rapamycin reversed the excessive mTOR signaling and hyperproliferation of Itpkb(-/-) HSC without rescuing colony forming activity. Thus, we propose that Itpkb ensures HSC quiescence and function through limiting cytokine-induced PI3K/mTOR signaling and other mechanisms.


Blood | 2013

Inositol tetrakisphosphate limits NK cell effector functions by controlling PI3K signaling

Karsten Sauer; Eugene Park; Sabine Siegemund; Anthony R. French; Joseph Wahle; Luise Sternberg; Stephanie Rigaud; Jonsson Ah; Wayne M. Yokoyama; Yina H. Huang

Natural killer (NK) cells have important functions in cancer immunosurveillance, BM allograft rejection, fighting infections, tissue homeostasis, and reproduction. NK cell-based therapies are promising treatments for blood cancers. Overcoming their currently limited efficacy requires a better understanding of the molecular mechanisms controlling NK cell development and dampening their effector functions. NK cells recognize the loss of self-antigens or up-regulation of stress-induced ligands on pathogen-infected or tumor cells through invariant NK cell receptors (NKRs), and then kill such stressed cells. Two second-messenger pathways downstream of NKRs are required for NK cell maturation and effector responses: PIP(3) generation by PI3K and generation of diacylglycerol and IP(3) by phospholipase-Cγ (PLCγ). In the present study, we identify a novel role for the phosphorylated IP(3) metabolite inositol (1,3,4,5)tetrakisphosphate (IP(4)) in NK cells. IP(4) promotes NK cell terminal differentiation and acquisition of a mature NKR repertoire. However, in mature NK cells, IP(4) limits NKR-induced IFNγ secretion, granule exocytosis, and target-cell killing, in part by inhibiting the PIP(3) effector-kinase Akt. This identifies IP(4) as an important novel regulator of NK cell development and function and expands our understanding of the therapeutically important mechanisms dampening NK cell responses. Our results further suggest that PI3K regulation by soluble IP(4) is a broadly important signaling paradigm.


Diabetes | 2016

CRISPR-Cas9 mediated modification of the NOD mouse genome with Ptpn22R619W mutation increases autoimmune diabetes

Xiaotian Lin; Stephane Pelletier; Sebastien Gingras; Stephanie Rigaud; Christian J. Maine; Kristi Marquardt; Yang D. Dai; Karsten Sauer; Alberto R. Rodriguez; Greg Martin; Sergey Kupriyanov; Ling Jiang; Liping Yu; Douglas R. Green; Linda A. Sherman

An allelic variant of protein tyrosine phosphatase nonreceptor type 22 (PTPN22), PTPN22R620W, is strongly associated with type 1 diabetes (T1D) in humans and increases the risk of T1D by two- to fourfold. The NOD mouse is a spontaneous T1D model that shares with humans many genetic pathways contributing to T1D. We hypothesized that the introduction of the murine orthologous Ptpn22R619W mutation to the NOD genome would enhance the spontaneous development of T1D. We microinjected CRISPR-Cas9 and a homology-directed repair template into NOD single-cell zygotes to introduce the Ptpn22R619W mutation to its endogenous locus. The resulting Ptpn22R619W mice showed increased insulin autoantibodies and earlier onset and higher penetrance of T1D. This is the first report demonstrating enhanced T1D in a mouse modeling human PTPN22R620W and the utility of CRISPR-Cas9 for direct genetic alternation of NOD mice.


eLife | 2016

Non-canonical antagonism of PI3K by the kinase Itpkb delays thymocyte β-selection and renders it Notch-dependent

Luise Westernberg; Claire Conche; Yina H. Huang; Stephanie Rigaud; Yisong Deng; Sabine Siegemund; Sayak Mukherjee; Lyn'Al Nosaka; Jayajit Das; Karsten Sauer

β-selection is the most pivotal event determining αβ T cell fate. Here, surface-expression of a pre-T cell receptor (pre-TCR) induces thymocyte metabolic activation, proliferation, survival and differentiation. Besides the pre-TCR, β-selection also requires co-stimulatory signals from Notch receptors - key cell fate determinants in eukaryotes. Here, we show that this Notch-dependence is established through antagonistic signaling by the pre-TCR/Notch effector, phosphoinositide 3-kinase (PI3K), and by inositol-trisphosphate 3-kinase B (Itpkb). Canonically, PI3K is counteracted by the lipid-phosphatases Pten and Inpp5d/SHIP-1. In contrast, Itpkb dampens pre-TCR induced PI3K/Akt signaling by producing IP4, a soluble antagonist of the Akt-activating PI3K-product PIP3. Itpkb-/- thymocytes are pre-TCR hyperresponsive, hyperactivate Akt, downstream mTOR and metabolism, undergo an accelerated β-selection and can develop to CD4+CD8+ cells without Notch. This is reversed by inhibition of Akt, mTOR or glucose metabolism. Thus, non-canonical PI3K-antagonism by Itpkb restricts pre-TCR induced metabolic activation to enforce coincidence-detection of pre-TCR expression and Notch-engagement. DOI: http://dx.doi.org/10.7554/eLife.10786.001


PLOS ONE | 2013

In Silico Modeling of Itk Activation Kinetics in Thymocytes Suggests Competing Positive and Negative IP4 Mediated Feedbacks Increase Robustness

Sayak Mukherjee; Stephanie Rigaud; Sang-Cheol Seok; Guo Fu; Agnieszka Prochenka; Michael Dworkin; Nicholas R. J. Gascoigne; Veronica J. Vieland; Karsten Sauer; Jayajit Das

The inositol-phosphate messenger inositol(1,3,4,5)tetrakisphosphate (IP4) is essential for thymocyte positive selection by regulating plasma-membrane association of the protein tyrosine kinase Itk downstream of the T cell receptor (TCR). IP4 can act as a soluble analog of the phosphoinositide 3-kinase (PI3K) membrane lipid product phosphatidylinositol(3,4,5)trisphosphate (PIP3). PIP3 recruits signaling proteins such as Itk to cellular membranes by binding to PH and other domains. In thymocytes, low-dose IP4 binding to the Itk PH domain surprisingly promoted and high-dose IP4 inhibited PIP3 binding of Itk PH domains. However, the mechanisms that underlie the regulation of membrane recruitment of Itk by IP4 and PIP3 remain unclear. The distinct Itk PH domain ability to oligomerize is consistent with a cooperative-allosteric mode of IP4 action. However, other possibilities cannot be ruled out due to difficulties in quantitatively measuring the interactions between Itk, IP4 and PIP3, and in generating non-oligomerizing Itk PH domain mutants. This has hindered a full mechanistic understanding of how IP4 controls Itk function. By combining experimentally measured kinetics of PLCγ1 phosphorylation by Itk with in silico modeling of multiple Itk signaling circuits and a maximum entropy (MaxEnt) based computational approach, we show that those in silico models which are most robust against variations of protein and lipid expression levels and kinetic rates at the single cell level share a cooperative-allosteric mode of Itk regulation by IP4 involving oligomeric Itk PH domains at the plasma membrane. This identifies MaxEnt as an excellent tool for quantifying robustness for complex TCR signaling circuits and provides testable predictions to further elucidate a controversial mechanism of PIP3 signaling.

Collaboration


Dive into the Stephanie Rigaud's collaboration.

Top Co-Authors

Avatar

Karsten Sauer

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Sabine Siegemund

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Claire Conche

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Luise Westernberg

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Guo Fu

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jayajit Das

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Luise Sternberg

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Sayak Mukherjee

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Nicholas R. J. Gascoigne

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Anthony R. French

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge