Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karsten Sauer is active.

Publication


Featured researches published by Karsten Sauer.


Cell | 1994

Cyclin E controls S phase progression and its down-regulation during Drosophila embryogenesis is required for the arrest of cell proliferation

Jürgen A. Knoblich; Karsten Sauer; Lynn Jones; Helena E. Richardson; Robert Saint; Christian F. Lehner

Most cells of the dorsal epidermis exit from the mitotic cycle after division 16 in Drosophila embryogenesis. This exit is dependent on the down-regulation of Drosophila cyclin E (DmcycE) during the final mitotic cycle. Ectopic expression of DmcycE after the final mitosis induces entry into S phase and reaccumulation of G2 cyclins and results in progression through a complete additional cell cycle. Conversely, analyses in DmcycE mutant embryos indicate that cyclin E is required for progression through S phase of the mitotic cycle. Moreover, endoreplication, which occurs in late wild-type embryos in the same pattern as DmcycE expression, is not observed in the mutant embryos. Therefore, Drosophila cyclin E, which forms a complex with the Dmcdc2c kinase, controls progression through S phase and its down-regulation limits embryonic proliferation.


Science | 2009

IL-21 Is Required to Control Chronic Viral Infection

Heidi Elsaesser; Karsten Sauer; David G. Brooks

Controlling Chronic Viral Infections Chronic viral infections such as HIV and hepatitis B and C viruses are major public health concerns. T cell—mediated immune responses are critical for controlling viral infections. In contrast to acute infections, chronic viral infections are characterized by “exhausted” cytotoxic CD8+ T cells, cells which exhibit reduced proliferative capacity, cytokine secretion, and cytotoxicity. Treatments that reverse exhaustion result in increased viral control. Despite their exhaustion, these CD8+ T cells eventually help to control chronic infections by killing virally infected cells, and require CD4+ T cell help to do so. How do CD4+ T cells provide help to CD8+ T cells during chronic infection (see the Perspective by Johnson and Jameson)? Elsaesser et al. (p. 1569, published online 7 May), Yi et al. (p. 1572, published online 14 May), and Fröhlich et al. (p. 1576, published online 28 May) now show that the cytokine, interleukin-21 (IL-21), known to be critical for the differentiation of certain CD4+ T cell effector subsets, is an essential factor produced by CD4+ T cells that helps CD8+ T cells to control chronic lymphocytic choriomeningitis virus infection in mice. Acute and chronic infections resulted in differing amounts of IL-21 production by virus-specific CD4+ T cells. CD8+ T cells required IL-21 directly, and when CD8+ T cells were unable to signal through IL-21 or IL-21 was not available, they were reduced in number, exhibited a more exhausted phenotype, and were not able to control the virus. In contrast, the absence of IL-21–dependent signaling did not affect primary CD8+ T cell responses to acute infection or responses to a viral rechallenge, suggesting that differentiation of memory CD8+ T cells is independent of IL-21. Interleukin-21 produced by CD4+ T cells helps CD8+ T cells control viral infection in a mouse model. CD4+ and CD8+ T cell functions are rapidly aborted during chronic infection, preventing viral clearance. CD4+ T cell help is required throughout chronic infection so as to sustain CD8+ T cell responses; however, the necessary factor(s) provided by CD4+ T cells are currently unknown. Using a mouse model of chronic viral infection, we demonstrated that interleukin-21 (IL-21) is an essential component of CD4+ T cell help. In the absence of IL-21 signaling, despite elevated CD4+ T cell responses, CD8+ T cell responses are severely impaired. CD8+ T cells directly require IL-21 to avoid deletion, maintain immunity, and resolve persistent infection. Thus, IL-21 specifically sustains CD8+ T cell effector activity and provides a mechanism of CD4+ T cell help during chronic viral infection.


Cell | 1996

Dacapo, a Cyclin-Dependent Kinase Inhibitor, Stops Cell Proliferation during Drosophila Development

Mary Ellen Lane; Karsten Sauer; Kenneth Wallace; Yuh Nung Jan; Christian F. Lehner; Harald Vaessin

Most cell types in multicellular eukaryotes exit from the mitotic cell cycle before terminal differentiation. We show that the dacapo gene is required to arrest the epidermal cell proliferation at the correct developmental stage during Drosophila embryogenesis. dacapo encodes an inhibitor of cyclin E/cdk2 complexes with similarity to the vertebrate Cip/Kip inhibitors. dacapo is transiently expressed beginning late in the G2 phase preceding the terminal division (mitosis 16). Mutants unable to express the inhibitor fail to arrest cell proliferation after mitosis 16 and progress through an extra division cycle. Conversely, premature dacapo expression in transgenic embryos results in a precocious G1 arrest.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry

Arthur R. Salomon; Scott B. Ficarro; Laurence M. Brill; Achim Brinker; Qui T. Phung; Christer Ericson; Karsten Sauer; Ansgar Brock; D. Horn; Peter G. Schultz; Eric C. Peters

The reversible phosphorylation of tyrosine residues is an important mechanism for modulating biological processes such as cellular signaling, differentiation, and growth, and if deregulated, can result in various types of cancer. Therefore, an understanding of these dynamic cellular processes at the molecular level requires the ability to assess changes in the sites of tyrosine phosphorylation across numerous proteins simultaneously as well as over time. Here we describe a sensitive approach based on multidimensional liquid chromatography/mass spectrometry that enables the rapid identification of numerous sites of tyrosine phosphorylation on a number of different proteins from human whole cell lysates. We used this methodology to follow changes in tyrosine phosphorylation patterns that occur over time during either the activation of human T cells or the inhibition of the oncogenic BCR-ABL fusion product in chronic myelogenous leukemia cells in response to treatment with STI571 (Gleevec). Together, these experiments rapidly identified 64 unique sites of tyrosine phosphorylation on 32 different proteins. Half of these sites have been documented in the literature, validating the merits of our approach, whereas motif analysis suggests that a number of the undocumented sites are also potentially involved in biological pathways. This methodology should enable the rapid generation of new insights into signaling pathways as they occur in states of health and disease.


Immunity | 2009

Cell-Intrinsic Transforming Growth Factor-β Signaling Mediates Virus-Specific CD8+ T Cell Deletion and Viral Persistence In Vivo

Roberto Tinoco; Victor Alcalde; Yating Yang; Karsten Sauer; Elina I. Zuniga

Although deficient CD8(+) T cell responses have long been associated with chronic viral infections, the underlying mechanisms are still unclear. Here we report that sustained transforming growth factor-beta (TGF-beta) expression and phosphorylation of its signaling mediator, Smad-2, were distinctive features of virus-specific CD8(+) T cells during chronic versus acute viral infections in vivo. The result was TGF-beta-dependent apoptosis of virus-specific CD8(+) T cells that related to upregulation of the proapoptotic protein Bim during chronic infection. Moreover, selective attenuation of TGF-beta signaling in T cells increased the numbers and multiple functions of antiviral CD8(+) T cells and enabled rapid eradication of the persistence-prone virus and memory generation. Finally, we found that cell-intrinsic TGF-beta signaling was responsible for virus-specific-CD8(+) T cell apoptosis and decreased numbers but was not necessary for their functional exhaustion. Our findings reveal persisting TGF-beta-Smad signaling as a hallmark and key regulator of CD8(+) T cell responses during chronic viral infections in vivo.


Immunity | 2000

Control of B Cell Production by the Adaptor Protein Lnk: Definition of a Conserved Family of Signal-Modulating Proteins

Satoshi Takaki; Karsten Sauer; Brian M. Iritani; Sylvia Chien; Yasuhiro Ebihara; Kohichiro Tsuji; Kiyoshi Takatsu; Roger M. Perlmutter

Lnk is an SH2 domain-containing adaptor protein expressed preferentially in lymphocytes. To illuminate the importance of Lnk, we generated lnk(-/-) mice. Whereas T cell development was unaffected, pre-B and immature B cells accumulated in the spleens. In the bone marrow, B-lineage cells were proportionately increased, reflecting enhanced production of pro-B cells that resulted in part from hypersensitivity of precursors to SCF, the ligand for c-kit. Hence, Lnk ordinarily acts to regulate B cell production. Further characterization of lnk(-/-) mice also revealed that full-length Lnk is a 68 kDa protein containing a conserved proline-rich region and a PH domain. Lnk is a representative of a multigene adaptor protein family whose members act, by analogy with Lnk, to modulate intracellular signaling.


Nature Immunology | 2009

Themis controls thymocyte selection through regulation of T cell antigen receptor–mediated signaling

Guo Fu; Sébastien Vallée; Vasily Rybakin; Marielena V. McGuire; Jeanette Ampudia; Claudia Brockmeyer; Mogjiborahman Salek; Paul R Fallen; John A. H. Hoerter; Anil Munshi; Yina H. Huang; Jianfang Hu; Howard S Fox; Karsten Sauer; Oreste Acuto; Nicholas R. J. Gascoigne

Themis (thymocyte-expressed molecule involved in selection), a member of a family of proteins with unknown functions, is highly conserved among vertebrates. Here we found that Themis had high expression in thymocytes between the pre–T cell antigen receptor (pre-TCR) and positive-selection checkpoints and low expression in mature T cells. Themis-deficient thymocytes showed defective positive selection, which resulted in fewer mature thymocytes. Negative selection was also impaired in Themis-deficient mice. A greater percentage of Themis-deficient T cells had CD4+CD25+Foxp3+ regulatory and CD62LloCD44hi memory phenotypes than did wild-type T cells. In support of the idea that Themis is involved in TCR signaling, this protein was phosphorylated quickly after TCR stimulation and was needed for optimal TCR-driven calcium mobilization and activation of the kinase Erk.


Expert Opinion on Investigational Drugs | 2011

Mechanisms of drug resistance in kinases.

Rina Barouch-Bentov; Karsten Sauer

Introduction: Because of their important roles in disease and excellent ‘druggability’, kinases have become the second largest drug target family. The great success of the BCR-ABL inhibitor imatinib in treating chronic myelogenous leukemia illustrates the high potential of kinase inhibitor (KI) therapeutics, but also unveils a major limitation: the development of drug resistance. This is a significant concern as KIs reach large patient populations for an expanding array of indications. Areas covered: We provide an up-to-date understanding of the mechanisms through which KIs function and through which cells can become KI-resistant. We review current and future approaches to overcome KI resistance, focusing on currently approved KIs and KIs in clinical trials. We then discuss approaches to improve KI efficacy and overcome drug resistance and novel approaches to develop less drug resistance-prone KI therapeutics. Expert opinion: Although drug resistance is a concern for current KI therapeutics, recent progress in our understanding of the underlying mechanisms and promising technological advances may overcome this limitation and provide powerful new therapeutics.


Nature | 2013

Themis sets the signal threshold for positive and negative selection in T-cell development

Guo Fu; Javier Casas; Stephanie Rigaud; Vasily Rybakin; Florence Lambolez; Joanna Brzostek; John A. H. Hoerter; Wolfgang Paster; Oreste Acuto; Hilde Cheroutre; Karsten Sauer; Nicholas R. J. Gascoigne

Development of a self-tolerant T-cell receptor (TCR) repertoire with the potential to recognize the universe of infectious agents depends on proper regulation of TCR signalling. The repertoire is whittled down during T-cell development in the thymus by the ability of quasi-randomly generated TCRs to interact with self-peptides presented by major histocompatibility complex (MHC) proteins. Low-affinity TCR interactions with self-MHC proteins generate weak signals that initiate ‘positive selection’, causing maturation of CD4- or CD8αβ-expressing ‘single-positive’ thymocytes from CD4+CD8αβ+ ‘double-positive’ precursors. These develop into mature naive T cells of the secondary lymphoid organs. TCR interaction with high-affinity agonist self-ligands results in ‘negative selection’ by activation-induced apoptosis or ‘agonist selection’ of functionally differentiated self-antigen-experienced T cells. Here we show that positive selection is enabled by the ability of the T-cell-specific protein Themis to specifically attenuate TCR signal strength via SHP1 recruitment and activation in response to low- but not high-affinity TCR engagement. Themis acts as an analog-to-digital converter translating graded TCR affinity into clear-cut selection outcome. By dampening mild TCR signals Themis increases the affinity threshold for activation, enabling positive selection of T cells with a naive phenotype in response to low-affinity self-antigens.


Nature Immunology | 2007

Production of Ins(1,3,4,5)P4 mediated by the kinase Itpkb inhibits store-operated calcium channels and regulates B cell selection and activation.

Andrew T Miller; Mark L. Sandberg; Yina H. Huang; Mike Young; Susan Sutton; Karsten Sauer; Michael P. Cooke

Antigen receptor–mediated production of inositol-1,4,5-trisphosphate (Ins(1,4,5)P3) in lymphocytes triggers the release of Ca2+ from intracellular stores; this release of Ca2+ results in the opening of store-operated Ca2+ channels in the plasma membrane. Here we report that mice lacking Ins(1,4,5)P3 3-kinase B (Itpkb), which converts Ins(1,4,5)P3 to inositol-1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), had impaired B lymphocyte development and defective immunoglobulin G3 antibody responses to a T lymphocyte–independent antigen. Itpkb-deficient B lymphocytes had the phenotypic and functional features of tolerant B lymphocytes and showed enhanced activity of store-operated Ca2+ channels after B lymphocyte receptor stimulation, which was reversed by the provision of exogenous Ins(1,3,4,5)P4. Our data identify Itpkb and its product Ins(1,3,4,5)P4 as inhibitors of store-operated Ca2+ channels and crucial regulators of B cell selection and activation.

Collaboration


Dive into the Karsten Sauer's collaboration.

Top Co-Authors

Avatar

Stephanie Rigaud

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Michael P. Cooke

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sabine Siegemund

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Claire Conche

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Tim Wiltshire

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Guo Fu

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Luise Westernberg

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas R. J. Gascoigne

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge