Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephanie S. Porter is active.

Publication


Featured researches published by Stephanie S. Porter.


Ecology Letters | 2015

Cheaters must prosper: reconciling theoretical and empirical perspectives on cheating in mutualism

Emily I. Jones; Michelle E. Afkhami; Erol Akçay; Judith L. Bronstein; Redouan Bshary; Megan E. Frederickson; Katy D. Heath; Jason D. Hoeksema; J. H. Ness; M. Sabrina Pankey; Stephanie S. Porter; Joel L. Sachs; Klara Scharnagl; Maren L. Friesen

Cheating is a focal concept in the study of mutualism, with the majority of researchers considering cheating to be both prevalent and highly damaging. However, current definitions of cheating do not reliably capture the evolutionary threat that has been a central motivation for the study of cheating. We describe the development of the cheating concept and distill a relative-fitness-based definition of cheating that encapsulates the evolutionary threat posed by cheating, i.e. that cheaters will spread and erode the benefits of mutualism. We then describe experiments required to conclude that cheating is occurring and to quantify fitness conflict more generally. Next, we discuss how our definition and methods can generate comparability and integration of theory and experiments, which are currently divided by their respective prioritisations of fitness consequences and traits. To evaluate the current empirical evidence for cheating, we review the literature on several of the best-studied mutualisms. We find that although there are numerous observations of low-quality partners, there is currently very little support from fitness data that any of these meet our criteria to be considered cheaters. Finally, we highlight future directions for research on conflict in mutualisms, including novel research avenues opened by a relative-fitness-based definition of cheating.


Ecology Letters | 2014

Selection for cheating across disparate environments in the legume-rhizobium mutualism

Stephanie S. Porter; Ellen L. Simms

The primary dilemma in evolutionarily stable mutualisms is that natural selection for cheating could overwhelm selection for cooperation. Cheating need not entail parasitism; selection favours cheating as a quantitative trait whenever less-cooperative partners are more fit than more-cooperative partners. Mutualisms might be stabilised by mechanisms that direct benefits to more-cooperative individuals, which counter selection for cheating; however, empirical evidence that natural selection favours cheating in mutualisms is sparse. We measured selection on cheating in single-partner pairings of wild legume and rhizobium lineages, which prevented legume choice. Across contrasting environments, selection consistently favoured cheating by rhizobia, but did not favour legumes that provided less benefit to rhizobium partners. This is the first simultaneous measurement of selection on cheating across both host and symbiont lineages from a natural population. We empirically confirm selection for cheating as a source of antagonistic coevolutionary pressure in mutualism and a biological dilemma for models of cooperation.


PLOS ONE | 2011

Mutualism and Adaptive Divergence: Co-Invasion of a Heterogeneous Grassland by an Exotic Legume-Rhizobium Symbiosis

Stephanie S. Porter; Maureen L. Stanton; Kevin J. Rice

Species interactions play a critical role in biological invasions. For example, exotic plant and microbe mutualists can facilitate each others spread as they co-invade novel ranges. Environmental context may influence the effect of mutualisms on invasions in heterogeneous environments, however these effects are poorly understood. We examined the mutualism between the legume, Medicago polymorpha, and the rhizobium, Ensifer medicae, which have both invaded California grasslands. Many of these invaded grasslands are composed of a patchwork of harsh serpentine and relatively benign non-serpentine soils. We grew legume genotypes collected from serpentine or non-serpentine soil in both types of soil in combination with rhizobium genotypes from serpentine or non-serpentine soils and in the absence of rhizobia. Legumes invested more strongly in the mutualism in the home soil type and trends in fitness suggested that this ecotypic divergence was adaptive. Serpentine legumes had greater allocation to symbiotic root nodules in serpentine soil than did non-serpentine legumes and non-serpentine legumes had greater allocation to nodules in non-serpentine soil than did serpentine legumes. Therefore, this invasive legume has undergone the rapid evolution of divergence for soil-specific investment in the mutualism. Contrary to theoretical expectations, the mutualism was less beneficial for legumes grown on the stressful serpentine soil than on the non-serpentine soil, possibly due to the inhibitory effects of serpentine on the benefits derived from the interaction. The soil-specific ability to allocate to a robust microbial mutualism may be a critical, and previously overlooked, adaptation for plants adapting to heterogeneous environments during invasion.


BMC Ecology | 2014

Specialization-generalization trade-off in a Bradyrhizobium symbiosis with wild legume hosts

Martine Ehinger; Toni J Mohr; Juliana B Starcevich; Joel L. Sachs; Stephanie S. Porter; Ellen L. Simms

BackgroundSpecialized interactions help structure communities, but persistence of specialized organisms is puzzling because a generalist can occupy more environments and partake in more beneficial interactions. The “Jack-of-all-trades is a master of none” hypothesis asserts that specialists persist because the fitness of a generalist utilizing a particular habitat is lower than that of a specialist adapted to that habitat. Yet, there are many reasons to expect that mutualists will generalize on partners.Plant-soil feedbacks help to structure plant and microbial communities, but how frequently are soil-based symbiotic mutualistic interactions sufficiently specialized to influence species distributions and community composition? To address this question, we quantified realized partner richness and phylogenetic breadth of four wild-grown native legumes (Lupinus bicolor, L. arboreus, Acmispon strigosus and A. heermannii) and performed inoculation trials to test the ability of two hosts (L. bicolor and A. strigosus) to nodulate (fundamental partner richness), benefit from (response specificity), and provide benefit to (effect specificity) 31 Bradyrhizobium genotypes.ResultsIn the wild, each Lupinus species hosted a broader genetic range of Bradyrhizobium than did either Acmispon species, suggesting that Acmispon species are more specialized. In the greenhouse, however, L. bicolor and A. strigosus did not differ in fundamental association specificity: all inoculated genotypes nodulated both hosts. Nevertheless, A. strigosus exhibited more specificity, i.e., greater variation in its response to, and effect on, Bradyrhizobium genotypes. Lupinus bicolor benefited from a broader range of genotypes but averaged less benefit from each. Both hosts obtained more fitness benefit from symbionts isolated from conspecific hosts; those symbionts in turn gained greater fitness benefit from hosts of the same species from which they were isolated.ConclusionsThis study affirmed two important tenets of evolutionary theory. First, as predicted by the Jack-of-all-trades is a master of none hypothesis, specialist A. strigosus obtained greater benefit from its beneficial symbionts than did generalist L. bicolor. Second, as predicted by coevolutionary theory, each test species performed better with partner genotypes isolated from conspecifics. Finally, positive fitness feedback between the tested hosts and symbionts suggests that positive plant-soil feedback could contribute to their patchy distributions in this system.


New Phytologist | 2013

Adaptive divergence in seed color camouflage in contrasting soil environments

Stephanie S. Porter

Although adaptive plant population divergence across contrasting soil conditions is often driven by abiotic soil factors, natural enemies may also contribute. Cryptic matching to the native soil color is a form of defensive camouflage that seeds can use to avoid detection by seed predators. The legume Acmispon wrangelianus occurs across a variety of gray-green serpentine soils and brown nonserpentine soils. Quantitative digital image analysis of seed and soil colors was used to test whether genetically based seed color is a closer match to the color of the native soil than to the color of other nearby soils. Lineages bear seeds that more closely match the color of their native serpentine or nonserpentine soil type than the opposing soil type. Further, even within a soil type, lineages bear seeds with a closer color match to the soil at their native site than to other sites. The striking concordance between seed and native soil color suggests that natural selection for locally camouflaged seed color morphs, probably driven by seed predators, may maintain adaptive divergence in pigmentation, despite the opportunity for migration between soil environments.


Evolution | 2013

TRADE‐OFFS, SPATIAL HETEROGENEITY, AND THE MAINTENANCE OF MICROBIAL DIVERSITY

Stephanie S. Porter; Kevin J. Rice

Specialization and concomitant trade‐offs are assumed to underlie the non‐neutral coexistence of lineages. Trade‐offs across heterogeneous environments can promote diversity by preventing competitive exclusion. However, the importance of trade‐offs in maintaining diversity in natural microbial assemblages is unclear, as trade‐offs are frequently not detected in artificial evolution experiments. Stressful conditions associated with patches of heavy‐metal enriched serpentine soils provide excellent opportunities for examining how heterogeneity may foster genetic diversity. Using a spatially replicated design, we demonstrate that rhizobium bacteria symbiotic with legumes inhabiting contrasting serpentine and nonserpentine soils exhibit a trade‐off between a genotypes nickel tolerance and its ability to replicate rapidly. Furthermore, we detected adaptive divergence in rhizobial assemblages across soil type heterogeneity at multiple sites, suggesting that this trade‐off may promote the coexistence of phenotypically distinct bacterial lineages. Trade‐offs and adaptive divergence may be important factors maintaining the tremendous diversity within natural assemblages of bacteria.


The ISME Journal | 2017

Association mapping reveals novel serpentine adaptation gene clusters in a population of symbiotic Mesorhizobium

Stephanie S. Porter; Peter L. Chang; Christopher A Conow; Joseph P. Dunham; Maren L. Friesen

The genetic variants that underlie microbial environmental adaptation are key components of models of microbial diversification. Characterizing adaptive variants and the pangenomic context in which they evolve remains a frontier in understanding how microbial diversity is generated. The genomics of rhizobium adaptation to contrasting soil environments is ecologically and agriculturally important because these bacteria are responsible for half of all current biologically fixed nitrogen, yet they live the majority of their lives in soil. Our study uses whole-genome sequencing to describe the pan-genome of a focal clade of wild mesorhizobia that show contrasting levels of nickel adaptation despite high relatedness (99.8% identity at 16S). We observe ecotypic specialization within an otherwise genomically cohesive population, rather than finding distinct specialized bacterial lineages in contrasting soil types. This finding supports recent reports that heterogeneous environments impose selection that maintains differentiation only at a small fraction of the genome. Our work further uses a genome-wide association study to propose candidate genes for nickel adaptation. Several candidates show homology to genetic systems involved in nickel tolerance and one cluster of candidates correlates perfectly with soil origin, which validates our approach of ascribing genomic variation to adaptive divergence.


Journal of Crustacean Biology | 2008

COMPARISON OF LIGHT TRAPS AND PLANKTON TOWS FOR SAMPLING BRACHYURAN CRAB LARVAE IN AN ALASKAN FJORD

Stephanie S. Porter; Ginny L. Eckert; Carrie J. Byron; Jennifer L. Fisher

Abstract We compared the effectiveness of light traps and plankton tows for sampling brachyuran crab larvae in Bartlett Cove, Glacier Bay, Alaska, U.S.A. during three nights each in July and August 2001 and June, August, and September 2002. Proportions of species and stages were used to compare larvae caught by light traps and plankton tows. Absolute numbers of larvae are difficult to compare because of the difference in sampling volume and duration of each method. Both methods captured early and late-stage larvae of four brachyuran families, Cancridae, Grapsidae, Pinnotheridae, and Majidae. However, light traps collected many late-stage (megalopae) cancrid larvae, which were rarely collected by plankton tows, suggesting that late-stage larvae may be undersampled by plankton tows. In contrast, plankton tows collected many early stage (zoeae) pinnotherid larvae, which may be undersampled by light traps. These results follow the same pattern as that found for tropical fish larvae, that light traps are a useful sampling device for settlement-size larvae. Light traps provide a simple method to collect high resolution temporal data on late-stage larval abundance, and their use has improved our ability to discern recruitment dynamics for decapod crustaceans.


Journal of Evolutionary Biology | 2016

Pollinator‐mediated assemblage processes in California wildflowers

R. Briscoe Runquist; Dena L. Grossenbacher; Stephanie S. Porter; Kathleen M. Kay; J. Smith

Community assembly is the result of multiple ecological and evolutionary forces that influence species coexistence. For flowering plants, pollinators are often essential for plant reproduction and establishment, and pollinator‐mediated interactions may influence plant community composition. Here, we use null models and community phylogenetic analyses of co‐occurrence patterns to determine the role of pollinator‐mediated processes in structuring plant communities dominated by congeners. We surveyed three species‐rich genera (Limnanthes, Mimulus and Clarkia) with centres of diversity in the Sierra Nevada of California. Each genus contains species that co‐flower and share pollinators, and each has a robust phylogeny. Within each genus, we surveyed 44–48 communities at three spatial scales, measured floral and vegetative traits and tested for segregation or aggregation of: (i) species, (ii) floral traits (which are likely to be influenced by pollinators), and (iii) vegetative traits (which are likely affected by other environmental factors). We detected both aggregation and segregation of floral traits that were uncorrelated with vegetative trait patterns; we infer that pollinators have shaped the community assembly although the mechanisms may be varied (competition, facilitation, or filtering). We also found that mating system differences may play an important role in allowing species co‐occurrence. Together, it appears that pollinators influence community assemblage in these three clades.


Molecular Ecology | 2012

Transcriptomic insights into mechanisms of symbiotic cooperation

Ellen L. Simms; Stephanie S. Porter

Intraspecific genetic variation can affect community structure and ecosystem processes (Bolnick et al. 2011). It can also influence phenotypic expression by genotypes within other species to produce genotype‐by‐genotype (G × G) interaction (Falconer & Mackay 1996). Evolution of one species drives correlated evolution of others when it causes G × G for fitness (Thompson 2005). However, the mechanisms by which species interact also influence evolutionary outcomes (Kummel & Salant 2006; Golubski & Klausmeier 2010; Akçay & Simms 2011; Grman et al. 2012). To identify genes and putative functional mechanisms underlying G × G interactions, Heath et al. (2012) analysed natural variation in the symbiotic transcriptome of the mutualistic nutritional symbiosis between a legume host Medicago truncatula and the facultative endosymbiotic rhizobium Sinorhizobium meliloti. Using twelve microarrays, the authors simultaneously measured host and symbiont gene expression in root nodules from four factorial pairings of host and symbiont genotypes that produced G × G in host fitness (Fig. 1, upper panel). Rhizobium gene expression was influenced by rhizobium and plant genotype and the G × G interaction (Fig. 1, lower panel), whereas plant gene expression was influenced primarily by plant genotype. The authors identified rhizobium genes that might contribute to G × G in host plant fitness. Heath et al. (2012) have moved beyond the constraints of single organism analysis towards a more realistic understanding of plants and bacteria as organisms inextricably linked with symbioses that affect even basic patterns of gene expression.

Collaboration


Dive into the Stephanie S. Porter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ellen L. Simms

University of California

View shared research outputs
Top Co-Authors

Avatar

Eric J. B. von Wettberg

Florida International University

View shared research outputs
Top Co-Authors

Avatar

Joel L. Sachs

University of California

View shared research outputs
Top Co-Authors

Avatar

Joshua Faber-Hammond

Washington State University Vancouver

View shared research outputs
Top Co-Authors

Avatar

Kevin J. Rice

University of California

View shared research outputs
Top Co-Authors

Avatar

Peter L. Chang

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Aaron Garoutte

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Angeliqua P. Montoya

Washington State University Vancouver

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge