Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joel L. Sachs is active.

Publication


Featured researches published by Joel L. Sachs.


The Quarterly Review of Biology | 2004

The Evolution of Cooperation

Joel L. Sachs; Ulrich G. Mueller; Thomas P. Wilcox; James J. Bull

Darwin recognized that natural selection could not favor a trait in one species solely for the benefit of another species. The modern, selfish‐gene view of the world suggests that cooperation between individuals, whether of the same species or different species, should be especially vulnerable to the evolution of noncooperators. Yet, cooperation is prevalent in nature both within and between species. What special circumstances or mechanisms thus favor cooperation? Currently, evolutionary biology offers a set of disparate explanations, and a general framework for this breadth of models has not emerged. Here, we offer a tripartite structure that links previously disconnected views of cooperation. We distinguish three general models by which cooperation can evolve and be maintained: (i) directed reciprocation—cooperation with individuals who give in return; (ii) shared genes—cooperation with relatives (e.g., kin selection); and (iii) byproduct benefits—cooperation as an incidental consequence of selfish action. Each general model is further subdivided. Several renowned examples of cooperation that have lacked explanation until recently—plant‐rhizobium symbioses and bacteria‐squid light organs—fit squarely within this framework. Natural systems of cooperation often involve more than one model, and a fruitful direction for future research is to understand how these models interact to maintain cooperation in the long term.


Proceedings of the Royal Society of London Series B, Biological Sciences | 2006

An empirical test of partner choice mechanisms in a wild legume–rhizobium interaction

Ellen L. Simms; D. Lee Taylor; Joshua Povich; Richard P. Shefferson; Joel L. Sachs; M. Urbina; Y. Tausczik

Mutualisms can be viewed as biological markets in which partners of different species exchange goods and services to their mutual benefit. Trade between partners with conflicting interests requires mechanisms to prevent exploitation. Partner choice theory proposes that individuals might foil exploiters by preferentially directing benefits to cooperative partners. Here, we test this theory in a wild legume–rhizobium symbiosis. Rhizobial bacteria inhabit legume root nodules and convert atmospheric dinitrogen (N2) to a plant available form in exchange for photosynthates. Biological market theory suits this interaction because individual plants exchange resources with multiple rhizobia. Several authors have argued that microbial cooperation could be maintained if plants preferentially allocated resources to nodules harbouring cooperative rhizobial strains. It is well known that crop legumes nodulate non-fixing rhizobia, but allocate few resources to those nodules. However, this hypothesis has not been tested in wild legumes which encounter partners exhibiting natural, continuous variation in symbiotic benefit. Our greenhouse experiment with a wild legume, Lupinus arboreus, showed that although plants frequently hosted less cooperative strains, the nodules occupied by these strains were smaller. Our survey of wild-grown plants showed that larger nodules house more Bradyrhizobia, indicating that plants may prevent the spread of exploitation by favouring better cooperators.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Evolutionary transitions in bacterial symbiosis

Joel L. Sachs; Ryan G. Skophammer; John U. Regus

Diverse bacterial lineages form beneficial infections with eukaryotic hosts. The origins, evolution, and breakdown of these mutualisms represent important evolutionary transitions. To examine these key events, we synthesize data from diverse interactions between bacteria and eukaryote hosts. Five evolutionary transitions are investigated, including the origins of bacterial associations with eukaryotes, the origins and subsequent stable maintenance of bacterial mutualism with hosts, the capture of beneficial symbionts via the evolution of strict vertical transmission within host lineages, and the evolutionary breakdown of bacterial mutualism. Each of these transitions has occurred many times in the history of bacterial–eukaryote symbiosis. We investigate these evolutionary events across the bacterial domain and also among a focal set of well studied bacterial mutualist lineages. Subsequently, we generate a framework for examining evolutionary transitions in bacterial symbiosis and test hypotheses about the selective, ecological, and genomic forces that shape these events.


Trends in Microbiology | 2015

Engineering Microbiomes to Improve Plant and Animal Health

Ulrich G. Mueller; Joel L. Sachs

Animal and plant microbiomes encompass diverse microbial communities that colonize every accessible host tissue. These microbiomes enhance host functions, contributing to host health and fitness. A novel approach to improve animal and plant fitness is to artificially select upon microbiomes, thus engineering evolved microbiomes with specific effects on host fitness. We call this engineering approach host-mediated microbiome selection, because this method selects upon microbial communities indirectly through the host and leverages host traits that evolved to influence microbiomes. In essence, host phenotypes are used as probes to gauge and manipulate those microbiome functions that impact host fitness. To facilitate research on host-mediated microbiome engineering, we explain and compare the principal methods to impose artificial selection on microbiomes; discuss advantages and potential challenges of each method; offer a skeptical appraisal of each method in light of these potential challenges; and outline experimental strategies to optimize microbiome engineering. Finally, we develop a predictive framework for microbiome engineering that organizes research around principles of artificial selection, quantitative genetics, and microbial community-ecology.


Journal of Evolutionary Biology | 2010

Origins of cheating and loss of symbiosis in wild Bradyrhizobium

Joel L. Sachs; M. O. Ehinger; Ellen L. Simms

Rhizobial bacteria nodulate legume roots and fix nitrogen in exchange for photosynthates. These symbionts are infectiously acquired from the environment and in such cases selection models predict evolutionary spread of uncooperative mutants. Uncooperative rhizobia – including nonfixing and non‐nodulating strains – appear common in agriculture, yet their population biology and origins remain unknown in natural soils. Here, a phylogenetically broad sample of 62 wild‐collected rhizobial isolates was experimentally inoculated onto Lotus strigosus to assess their nodulation ability and effects on host growth. A cheater strain was discovered that proliferated in host tissue while offering no benefit; its fitness was superior to that of beneficial strains. Phylogenetic reconstruction of Bradyrhizobium rDNA and transmissible symbiosis‐island loci suggest that the cheater evolved via symbiotic gene transfer. Many strains were also identified that failed to nodulate L. strigosus, and it appears that nodulation ability on this host has been recurrently lost in the symbiont population. This is the first study to reveal the adaptive nature of rhizobial cheating and to trace the evolutionary origins of uncooperative rhizobial mutants.


Trends in Ecology and Evolution | 2011

New paradigms for the evolution of beneficial infections

Joel L. Sachs; Carla J. Essenberg; Martin M. Turcotte

A longstanding paradigm predicts that microbial parasites and mutualists exhibit disparate evolutionary patterns. Parasites are predicted to promote arms races with hosts, rapid evolution and sexual recombination. By contrast, mutualists have been linked with beneficial coadaptation, evolutionary stasis and asexuality. In this review we discuss the recent surge of molecular data on microbes that are being used to test and reshape these ideas. New analyses reveal that beneficial microbes often share mechanisms of infection and defense with parasites, and can also exhibit rapid evolution and extensive genetic exchange. To explain these patterns, new paradigms must take into account the varied population biology of beneficial microbes, their potential conflicts with hosts, and the mosaic nature of genome evolution that requires locus-based tests to analyze the genetics of host adaptation.


Ecology Letters | 2015

Cheaters must prosper: reconciling theoretical and empirical perspectives on cheating in mutualism

Emily I. Jones; Michelle E. Afkhami; Erol Akçay; Judith L. Bronstein; Redouan Bshary; Megan E. Frederickson; Katy D. Heath; Jason D. Hoeksema; J. H. Ness; M. Sabrina Pankey; Stephanie S. Porter; Joel L. Sachs; Klara Scharnagl; Maren L. Friesen

Cheating is a focal concept in the study of mutualism, with the majority of researchers considering cheating to be both prevalent and highly damaging. However, current definitions of cheating do not reliably capture the evolutionary threat that has been a central motivation for the study of cheating. We describe the development of the cheating concept and distill a relative-fitness-based definition of cheating that encapsulates the evolutionary threat posed by cheating, i.e. that cheaters will spread and erode the benefits of mutualism. We then describe experiments required to conclude that cheating is occurring and to quantify fitness conflict more generally. Next, we discuss how our definition and methods can generate comparability and integration of theory and experiments, which are currently divided by their respective prioritisations of fitness consequences and traits. To evaluate the current empirical evidence for cheating, we review the literature on several of the best-studied mutualisms. We find that although there are numerous observations of low-quality partners, there is currently very little support from fitness data that any of these meet our criteria to be considered cheaters. Finally, we highlight future directions for research on conflict in mutualisms, including novel research avenues opened by a relative-fitness-based definition of cheating.


PLOS ONE | 2011

Evolutionary Instability of Symbiotic Function in Bradyrhizobium japonicum

Joel L. Sachs; James Russell; Amanda C. Hollowell

Bacterial mutualists are often acquired from the environment by eukaryotic hosts. However, both theory and empirical work suggest that this bacterial lifestyle is evolutionarily unstable. Bacterial evolution outside of the host is predicted to favor traits that promote an independent lifestyle in the environment at a cost to symbiotic function. Consistent with these predictions, environmentally-acquired bacterial mutualists often lose symbiotic function over evolutionary time. Here, we investigate the evolutionary erosion of symbiotic traits in Bradyrhizobium japonicum, a nodulating root symbiont of legumes. Building on a previous published phylogeny we infer loss events of nodulation capability in a natural population of Bradyrhizobium, potentially driven by mutation or deletion of symbiosis loci. Subsequently, we experimentally evolved representative strains from the symbiont population under host-free in vitro conditions to examine potential drivers of these loss events. Among Bradyrhizobium genotypes that evolved significant increases in fitness in vitro, two exhibited reduced symbiotic quality, but no experimentally evolved strain lost nodulation capability or evolved any fixed changes at six sequenced loci. Our results are consistent with trade-offs between symbiotic quality and fitness in a host free environment. However, the drivers of loss-of-nodulation events in natural Bradyrhizobium populations remain unknown.


PLOS Pathogens | 2013

Mutualistic co-evolution of type III effector genes in Sinorhizobium fredii and Bradyrhizobium japonicum.

Jeffrey A. Kimbrel; William J. Thomas; Yuan Jiang; Allison L. Creason; Joel L. Sachs; Jeff H. Chang

Two diametric paradigms have been proposed to model the molecular co-evolution of microbial mutualists and their eukaryotic hosts. In one, mutualist and host exhibit an antagonistic arms race and each partner evolves rapidly to maximize their own fitness from the interaction at potential expense of the other. In the opposing model, conflicts between mutualist and host are largely resolved and the interaction is characterized by evolutionary stasis. We tested these opposing frameworks in two lineages of mutualistic rhizobia, Sinorhizobium fredii and Bradyrhizobium japonicum. To examine genes demonstrably important for host-interactions we coupled the mining of genome sequences to a comprehensive functional screen for type III effector genes, which are necessary for many Gram-negative pathogens to infect their hosts. We demonstrate that the rhizobial type III effector genes exhibit a surprisingly high degree of conservation in content and sequence that is in contrast to those of a well characterized plant pathogenic species. This type III effector gene conservation is particularly striking in the context of the relatively high genome-wide diversity of rhizobia. The evolution of rhizobial type III effectors is inconsistent with the molecular arms race paradigm. Instead, our results reveal that these loci are relatively static in rhizobial lineages and suggest that fitness conflicts between rhizobia mutualists and their host plants have been largely resolved.


BMC Ecology | 2014

Specialization-generalization trade-off in a Bradyrhizobium symbiosis with wild legume hosts

Martine Ehinger; Toni J Mohr; Juliana B Starcevich; Joel L. Sachs; Stephanie S. Porter; Ellen L. Simms

BackgroundSpecialized interactions help structure communities, but persistence of specialized organisms is puzzling because a generalist can occupy more environments and partake in more beneficial interactions. The “Jack-of-all-trades is a master of none” hypothesis asserts that specialists persist because the fitness of a generalist utilizing a particular habitat is lower than that of a specialist adapted to that habitat. Yet, there are many reasons to expect that mutualists will generalize on partners.Plant-soil feedbacks help to structure plant and microbial communities, but how frequently are soil-based symbiotic mutualistic interactions sufficiently specialized to influence species distributions and community composition? To address this question, we quantified realized partner richness and phylogenetic breadth of four wild-grown native legumes (Lupinus bicolor, L. arboreus, Acmispon strigosus and A. heermannii) and performed inoculation trials to test the ability of two hosts (L. bicolor and A. strigosus) to nodulate (fundamental partner richness), benefit from (response specificity), and provide benefit to (effect specificity) 31 Bradyrhizobium genotypes.ResultsIn the wild, each Lupinus species hosted a broader genetic range of Bradyrhizobium than did either Acmispon species, suggesting that Acmispon species are more specialized. In the greenhouse, however, L. bicolor and A. strigosus did not differ in fundamental association specificity: all inoculated genotypes nodulated both hosts. Nevertheless, A. strigosus exhibited more specificity, i.e., greater variation in its response to, and effect on, Bradyrhizobium genotypes. Lupinus bicolor benefited from a broader range of genotypes but averaged less benefit from each. Both hosts obtained more fitness benefit from symbionts isolated from conspecific hosts; those symbionts in turn gained greater fitness benefit from hosts of the same species from which they were isolated.ConclusionsThis study affirmed two important tenets of evolutionary theory. First, as predicted by the Jack-of-all-trades is a master of none hypothesis, specialist A. strigosus obtained greater benefit from its beneficial symbionts than did generalist L. bicolor. Second, as predicted by coevolutionary theory, each test species performed better with partner genotypes isolated from conspecifics. Finally, positive fitness feedback between the tested hosts and symbionts suggests that positive plant-soil feedback could contribute to their patchy distributions in this system.

Collaboration


Dive into the Joel L. Sachs's collaboration.

Top Co-Authors

Avatar

John U. Regus

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ellen L. Simms

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelsey A. Gano

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor Pahua

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge