Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen Berryman is active.

Publication


Featured researches published by Stephen Berryman.


Journal of Virology | 2004

Integrin αvβ8 Functions as a Receptor for Foot-and-Mouth Disease Virus: Role of the β-Chain Cytodomain in Integrin-Mediated Infection

Terry Jackson; Stuart Clark; Stephen Berryman; Alison Burman; Stephanie Cambier; Dezhi Mu; Stephen L. Nishimura; Andrew M. Q. King

ABSTRACT Field isolates of foot-and-mouth disease virus (FMDV) have been shown to use three αv integrins, αvβ1, αvβ3, and αvβ6, as cellular receptors. Binding to the integrin is mediated by a highly conserved RGD motif located on a surface-exposed loop of VP1. The RGD tripeptide is recognized by several other members of the integrin family, which therefore have the potential to act as receptors for FMDV. Here we show that SW480 cells are made susceptible to FMDV following transfection with human β8 cDNA and expression of αvβ8 at the cell surface. The involvement of αvβ8 in infection was confirmed by showing that virus binding and infection of the transfected cells are inhibited by RGD-containing peptides and by function-blocking monoclonal antibodies specific for either the αvβ8 heterodimer or the αv chain. Similar results were obtained with a chimeric αvβ8 including the β6 cytodomain (αvβ8/6), showing that the β6 cytodomain can substitute efficiently for the corresponding region of β8. In contrast, virus binding to αvβ6 including the β8 cytodomain (αvβ6/8) was lower than that of the wild-type integrin, and this binding did not lead to infection. Further, the αvβ6 chimera was recognized poorly by antibodies specific for the ectodomain of αvβ6 and displayed a relaxed sequence-binding specificity relative to that of wild-type integrin. These data suggest that the β6 cytodomain is important for maintaining αvβ6 in a conformation required for productive infection by FMDV.


Journal of Virology | 2005

Early Events in Integrin αvβ6-Mediated Cell Entry of Foot-and-Mouth Disease Virus

Stephen Berryman; Stuart Clark; Paul Monaghan; Terry Jackson

ABSTRACT We have shown that foot-and-mouth disease virus (FMDV) infection mediated by the integrin αvβ6 takes place through clathrin-dependent endocytosis but not caveolae or other endocytic pathways that depend on lipid rafts. Inhibition of clathrin-dependent endocytosis by sucrose treatment or expression of a dominant-negative version of AP180 inhibited virus entry and infection. Similarly, inhibition of endosomal acidification inhibited an early step in infection. Blocking endosomal acidification did not interfere with surface expression of αvβ6, virus binding to the cells, uptake of the virus into endosomes, or cytoplasmic virus replication, suggesting that the low pH within endosomes is a prerequisite for delivery of viral RNA into the cytosol. Using immunofluorescence confocal microscopy, FMDV colocalized with αvβ6 at the cell surface but not with the B subunit of cholera toxin, a marker for lipid rafts. At 37°C, virus was rapidly taken up into the cells and colocalized with markers for early and recycling endosomes but not with a marker for lysosomes, suggesting that infection occurs from within the early or recycling endosomal compartments. This conclusion was supported by the observation that FMDV infection is not inhibited by nocodazole, a reagent that inhibits vesicular trafficking between early and late endosomes (and hence trafficking to lysosomes). The integrin αvβ6 was also seen to accumulate in early and recycling endosomes on virus entry, suggesting that the integrin serves not only as an attachment receptor but also to deliver the virus to the acidic endosomes. These findings are all consistent with FMDV infection proceeding via clathrin-dependent endocytosis.


Journal of Virology | 2008

Foot-and-Mouth Disease Virus Forms a Highly Stable, EDTA-Resistant Complex with Its Principal Receptor, Integrin αvβ6: Implications for Infectiousness

Danielle DiCara; Alison Burman; Stuart Clark; Stephen Berryman; Mark J. Howard; Ian R. Hart; John Marshall; Terry Jackson

ABSTRACT The initial stage of foot-and-mouth disease virus (FMDV) infection is virus binding to cell surface integrins via the RGD motif in the GH loop of the VP1 capsid protein. As for all ligand/integrin interactions, the initial contact between FMDV and its integrin receptors is cation dependent and hence inhibited by EDTA. We have investigated this binding process with RGD-containing peptides derived from the VP1 capsid protein of FMDV and discovered that, upon binding, some of these peptides form highly stable, EDTA-resistant associations with integrin αvβ6. Peptides containing specific substitutions show that this stable binding is dependent on a helical structure immediately C terminal to the RGD and, specifically, two leucine residues at positions RGD +1 and RGD +4. These observations have a biological consequence, as we show further that stable, EDTA-resistant binding to αvβ6 is a property also exhibited by FMDV particles. Thus, the integrin-binding loop of FMDV appears to have evolved to form very stable complexes with the principal receptor of FMDV, integrin αvβ6. An ability to induce such stable complexes with its cellular receptor is likely to contribute significantly to the high infectiousness of FMDV.


Journal of Virology | 2009

A Dominant-Negative Mutant of rab5 Inhibits Infection of Cells by Foot-and-Mouth Disease Virus: Implications for Virus Entry

Helen L. Johns; Stephen Berryman; Paul Monaghan; Graham J. Belsham; Terry Jackson

ABSTRACT Foot-and-mouth disease virus (FMDV) can use a number of different integrins (αvβ1, αvβ3, αvβ6, and αvβ8) as receptors to initiate infection. Infection mediated by αvβ6 is known to occur by clathrin-mediated endocytosis and is dependent on the acidic pH within endosomes. On internalization, virus is detected rapidly in early endosomes (EE) and subsequently in perinuclear recycling endosomes (PNRE), but not in late endosomal compartments. Due to the extreme sensitivity of FMDV to acidic pH, it is thought that EE can provide a pH low enough for infection to occur; however, definitive proof that infection takes place from within these compartments is still lacking. Here we have investigated the intracellular transport steps required for FMDV infection of IBRS-2 cells, which express αvβ8 as their FMDV receptor. These experiments confirmed that FMDV infection mediated by αvβ8 is also dependent on clathrin-mediate endocytosis and an acidic pH within endosomes. Also, the effect on FMDV infection of dominant-negative (DN) mutants of cellular rab proteins that regulate endosomal traffic was examined. Expression of DN rab5 reduced the number of FMDV-infected cells by 80%, while expression of DN rab4 or DN rab7 had virtually no effect on infection. Expression of DN rab11 inhibited infection by FMDV, albeit to a small extent (∼35%). These results demonstrate that FMDV infection takes place predominantly from within EE and does not require virus trafficking to the late endosomal compartments. However, our results suggest that infection may not be exclusive to EE and that a small amount of infection could occur from within PNRE.


Journal of Virology | 2012

Foot-and-Mouth Disease Virus Induces Autophagosomes during Cell Entry via a Class III Phosphatidylinositol 3-Kinase-Independent Pathway

Stephen Berryman; Elizabeth Brooks; Alison Burman; Philippa Hawes; Rebecca Roberts; Christopher L. Netherton; Paul Monaghan; Matthew Whelband; Eleanor M. Cottam; Zvulun Elazar; Terry Jackson; Thomas Wileman

ABSTRACT Autophagy is an intracellular pathway that can contribute to innate antiviral immunity by delivering viruses to lysosomes for degradation or can be beneficial for viruses by providing specialized membranes for virus replication. Here, we show that the picornavirus foot-and-mouth disease virus (FMDV) induces the formation of autophagosomes. Induction was dependent on Atg5, involved processing of LC3 to LC3II, and led to a redistribution of LC3 from the cytosol to punctate vesicles indicative of authentic autophagosomes. Furthermore, FMDV yields were reduced in cells lacking Atg5, suggesting that autophagy may facilitate FMDV infection. However, induction of autophagosomes by FMDV appeared to differ from starvation, as the generation of LC3 punctae was not inhibited by wortmannin, implying that FMDV-induced autophagosome formation does not require the class III phosphatidylinositol 3-kinase (PI3-kinase) activity of vps34. Unlike other picornaviruses, for which there is strong evidence that autophagosome formation is linked to expression of viral nonstructural proteins, FMDV induced autophagosomes very early during infection. Furthermore, autophagosomes could be triggered by either UV-inactivated virus or empty FMDV capsids, suggesting that autophagosome formation was activated during cell entry. Unlike other picornaviruses, FMDV-induced autophagosomes did not colocalize with the viral 3A or 3D protein. In contrast, ∼50% of the autophagosomes induced by FMDV colocalized with VP1. LC3 and VP1 also colocalized with the cellular adaptor protein p62, which normally targets ubiquitinated proteins to autophagosomes. These results suggest that FMDV induces autophagosomes during cell entry to facilitate infection, but not to provide membranes for replication.


Journal of Virology | 2007

Guinea Pig-Adapted Foot-and-Mouth Disease Virus with Altered Receptor Recognition Can Productively Infect a Natural Host

José I. Núñez; Nicolás Molina; Eric Baranowski; Esteban Domingo; Stuart Clark; Alison Burman; Stephen Berryman; Terry Jackson; Francisco Sobrino

ABSTRACT We report that adaptation to infect the guinea pig did not modify the capacity of foot-and-mouth disease virus (FMDV) to kill suckling mice and to cause an acute and transmissible disease in the pig, an important natural host for this pathogen. Adaptive amino acid replacements (I248→T in 2C, Q44→R in 3A, and L147→P in VP1), selected upon serial passages of a type C FMDV isolated from swine (biological clone C-S8c1) in the guinea pig, were maintained after virus multiplication in swine and suckling mice. However, the adaptive replacement L147→P, next to the integrin-binding RGD motif at the GH loop in VP1, abolished growth of the virus in different established cell lines and modified its antigenicity. In contrast, primary bovine thyroid cell cultures could be productively infected by viruses with replacement L147→P, and this infection was inhibited by antibodies to αvβ6 and by an FMDV-derived RGD-containing peptide, suggesting that integrin αvβ6 may be used as a receptor for these mutants in the animal (porcine, guinea pig, and suckling mice) host. Substitution T248→N in 2C was not detectable in C-S8c1 but was present in a low proportion of the guinea pig-adapted virus. This substitution became rapidly dominant in the viral population after the reintroduction of the guinea pig-adapted virus into pigs. These observations illustrate how the appearance of minority variant viruses in an unnatural host can result in the dominance of these viruses on reinfection of the original host species.


Journal of General Virology | 2011

Capsid proteins from field strains of foot-and-mouth disease virus confer a pathogenic phenotype in cattle on an attenuated, cell-culture-adapted virus

Anette Bøtner; Naresh K. Kakker; Cyril Barbezange; Stephen Berryman; Terry Jackson; Graham J. Belsham

Chimeric foot-and-mouth disease viruses (FMDVs) have been generated from plasmids containing full-length FMDV cDNAs and characterized. The parental virus cDNA was derived from the cell-culture-adapted O1Kaufbeuren B64 (O1K B64) strain. Chimeric viruses, containing capsid coding sequences derived from the O/UKG/34/2001 or A/Turkey 2/2006 field viruses, were constructed using the backbone from the O1K B64 cDNA, and viable viruses (O1K/O-UKG and O1K/A-Tur, respectively) were successfully rescued in each case. These viruses grew well in primary bovine thyroid cells but grew less efficiently in BHK cells than the rescued parental O1K B64 virus. The two chimeric viruses displayed the expected antigenicity in serotype-specific antigen ELISAs. Following inoculation of each virus into cattle, the rescued O1K B64 strain proved to be attenuated whereas, with each chimeric virus, typical clinical signs of foot-and-mouth disease were observed, which then spread to in-contact animals. Thus, the surface-exposed capsid proteins of the O1K B64 strain are responsible for its attenuation in cattle. Consequently, there is no evidence for any adaptation, acquired during cell culture, outside the capsid coding region within the O1K B64 strain that inhibits replication in cattle. These chimeric infectious cDNA plasmids provide a basis for the analysis of FMDV pathogenicity and characterization of receptor utilization in vivo.


Journal of General Virology | 2013

An infectious recombinant foot-and-mouth disease virus expressing a fluorescent marker protein

Julian Seago; Nicholas Juleff; Katy Moffat; Stephen Berryman; John M. Christie; Bryan Charleston; Terry Jackson

Foot-and-mouth disease virus (FMDV) is one of the most extensively studied animal pathogens because it remains a major threat to livestock economies worldwide. However, the dynamics of FMDV infection are still poorly understood. The application of reverse genetics provides the opportunity to generate molecular tools to further dissect the FMDV life cycle. Here, we have used reverse genetics to determine the capsid packaging limitations for a selected insertion site in the FMDV genome. We show that exogenous RNA up to a defined length can be stably introduced into the FMDV genome, whereas larger insertions are excised by recombination events. This led us to construct a recombinant FMDV expressing the fluorescent marker protein, termed iLOV. Characterization of infectious iLOV-FMDV showed the virus has a plaque morphology and rate of growth similar to the parental virus. In addition, we show that cells infected with iLOV-FMDV are easily differentiated by flow cytometry using the inherent fluorescence of iLOV and that cells infected with iLOV-FMDV can be monitored in real-time with fluorescence microscopy. iLOV-FMDV therefore offers a unique tool to characterize FMDV infection in vitro, and its applications for in vivo studies are discussed.


Journal of Virology | 2013

Positively Charged Residues at the Five-Fold Symmetry Axis of Cell Culture-Adapted Foot-and-Mouth Disease Virus Permit Novel Receptor Interactions

Stephen Berryman; Stuart Clark; Naresh K. Kakker; Rhiannon Silk; Julian Seago; Jemma Wadsworth; Kyle Chamberlain; Nick J. Knowles; Terry Jackson

ABSTRACT Field isolates of foot-and-mouth disease virus (FMDV) have a restricted cell tropism which is limited by the need for certain RGD-dependent integrin receptors. In contrast, cell culture-adapted viruses use heparan sulfate (HS) or other unidentified molecules as receptors to initiate infection. Here, we report several novel findings resulting from cell culture adaptation of FMDV. In cell culture, a virus with the capsid of the A/Turkey/2/2006 field isolate gained the ability to infect CHO and HS-deficient CHO cells as a result of a single glutamine (Q)-to-lysine (K) substitution at VP1-110 (VP1-Q110K). Using site-directed mutagenesis, the introduction of lysine at this same site also resulted in an acquired ability to infect CHO cells by type O and Asia-1 FMDV. However, this ability appeared to require a second positively charged residue at VP1-109. CHO cells express two RGD-binding integrins (α5β1 and αvβ5) that, although not used by FMDV, have the potential to be used as receptors; however, viruses with the VP1-Q110K substitution did not use these integrins. In contrast, the VP1-Q110K substitution appeared to result in enhanced interactions with αvβ6, which allowed a virus with KGE in place of the normal RGD integrin-binding motif to use αvβ6 as a receptor. Thus, our results confirmed the existence of nonintegrin, non-HS receptors for FMDV on CHO cells and revealed a novel, non-RGD-dependent use of αvβ6 as a receptor. The introduction of lysine at VP1-110 may allow for cell culture adaptation of FMDV by design, which may prove useful for vaccine manufacture when cell culture adaptation proves intractable.


Journal of General Virology | 2013

A role for endoplasmic reticulum exit sites in foot-and-mouth disease virus infection

Rebecca Midgley; Katy Moffat; Stephen Berryman; Philippa Hawes; Jennifer Simpson; Daniel Fullen; David. J. Stephens; Alison Burman; Terry Jackson

Picornaviruses replicate their genomes in association with cellular membranes. While enteroviruses are believed to utilize membranes of the early secretory pathway, the origin of the membranes used by foot-and-mouth disease virus (FMDV) for replication are unknown. Secretory-vesicle traffic through the early secretory pathway is mediated by the sequential acquisition of two distinct membrane coat complexes, COPII and COPI, and requires the coordinated actions of Sar1, Arf1 and Rab proteins. Sar1 is essential for generating COPII vesicles at endoplasmic reticulum (ER) exit sites (ERESs), while Arf1 and Rab1 are required for subsequent vesicle transport by COPI vesicles. In the present study, we have provided evidence that FMDV requires pre-Golgi membranes of the early secretory pathway for infection. Small interfering RNA depletion of Sar1 or expression of a dominant-negative (DN) mutant of Sar1a inhibited FMDV infection. In contrast, a dominant-active mutant of Sar1a, which allowed COPII vesicle formation but inhibited the secretory pathway by stabilizing COPII coats, caused major disruption to the ER-Golgi intermediate compartment (ERGIC) but did not inhibit infection. Treatment of cells with brefeldin A, or expression of DN mutants of Arf1 and Rab1a, disrupted the Golgi and enhanced FMDV infection. These results show that reagents that block the early secretory pathway at ERESs have an inhibitory effect on FMDV infection, while reagents that block the early secretory pathway immediately after ER exit but before the ERGIC and Golgi make infection more favourable. Together, these observations argue for a role for Sar1 in FMDV infection and that initial virus replication takes place on membranes that are formed at ERESs.

Collaboration


Dive into the Stephen Berryman's collaboration.

Top Co-Authors

Avatar

Terry Jackson

Institute for Animal Health

View shared research outputs
Top Co-Authors

Avatar

Alison Burman

Institute for Animal Health

View shared research outputs
Top Co-Authors

Avatar

Stuart Clark

Institute for Animal Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katy Moffat

Institute for Animal Health

View shared research outputs
Top Co-Authors

Avatar

Paul Monaghan

Australian Animal Health Laboratory

View shared research outputs
Top Co-Authors

Avatar

Amin S. Asfor

Institute for Animal Health

View shared research outputs
Top Co-Authors

Avatar

Donald P. King

Institute for Animal Health

View shared research outputs
Top Co-Authors

Avatar

Joseph Newman

Institute for Animal Health

View shared research outputs
Top Co-Authors

Avatar

Julian Seago

Institute for Animal Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge