Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen D. Sebestyen is active.

Publication


Featured researches published by Stephen D. Sebestyen.


Water Resources Research | 2008

Sources, transformations, and hydrological processes that control stream nitrate and dissolved organic matter concentrations during snowmelt in an upland forest

Stephen D. Sebestyen; Elizabeth W. Boyer; James B. Shanley; Carol Kendall; Daniel H. Doctor; George R. Aiken; Nobuhito Ohte

We explored catchment processes that control stream nutrient concentrations at an upland forest in northeastern Vermont, USA, where inputs of nitrogen via atmospheric deposition are among the highest in the nation and affect ecosystem functioning. We traced sources of water, nitrate, and dissolved organic matter (DOM) using stream water samples collected at high frequency during spring snowmelt. Hydrochemistry, isotopic tracers, and end-member mixing analyses suggested the timing, sources, and source areas from which water and nutrients entered the stream. Although stream-dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) both originated from leaching of soluble organic matter, flushing responses between these two DOM components varied because of dynamic shifts of hydrological flow paths and sources that supply the highest concentrations of DOC and DON.


BioScience | 2012

Ecosystem Processes and Human Influences Regulate Streamflow Response to Climate Change at Long-Term Ecological Research Sites

Julia A. Jones; Irena F. Creed; Kendra L. Hatcher; Robert J. Warren; Mary Beth Adams; Melinda Harm Benson; Emery R. Boose; Warren Brown; John Campbell; Alan P. Covich; David W. Clow; Clifford N. Dahm; Kelly Elder; Chelcy R. Ford; Nancy B. Grimm; Donald L. Henshaw; Kelli L. Larson; Evan S. Miles; Kathleen M. Miles; Stephen D. Sebestyen; Adam T. Spargo; Asa B. Stone; James M. Vose; Mark W. Williams

Analyses of long-term records at 35 headwater basins in the United States and Canada indicate that climate change effects on streamflow are not as clear as might be expected, perhaps because of ecosystem processes and human influences. Evapotranspiration was higher than was predicted by temperature in water-surplus ecosystems and lower than was predicted in water-deficit ecosystems. Streamflow was correlated with climate variability indices (e.g., the El Niño—Southern Oscillation, the Pacific Decadal Oscillation, the North Atlantic Oscillation), especially in seasons when vegetation influences are limited. Air temperature increased significantly at 17 of the 19 sites with 20- to 60-year records, but streamflow trends were directly related to climate trends (through changes in ice and snow) at only 7 sites. Past and present human and natural disturbance, vegetation succession, and human water use can mimic, exacerbate, counteract, or mask the effects of climate change on streamflow, even in reference basins. Long-term ecological research sites are ideal places to disentangle these processes.


Global Change Biology | 2014

Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America.

Irena F. Creed; Adam T. Spargo; Julia A. Jones; Jim Buttle; Mary Beth Adams; Fred Beall; Eric G. Booth; John L. Campbell; Dave Clow; Kelly Elder; Mark B. Green; Nancy B. Grimm; Chelcy F. Miniat; Patricia Ramlal; Amartya K. Saha; Stephen D. Sebestyen; Dave Spittlehouse; Shannon Sterling; Mark W. Williams; Rita Winkler; Huaxia Yao

Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchments change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period – a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI – high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to climate warming than the more diverse mixed forest catchments.


Journal of Geophysical Research | 2009

Responses of stream nitrate and DOC loadings to hydrological forcing and climate change in an upland forest of the northeastern United States

Stephen D. Sebestyen; Elizabeth W. Boyer; James B. Shanley

climate, growing season stream fluxes (runoff +20%, nitrate +57%, and DOC +58%) increaseasmoreprecipitation(+28%)andquickflow(+39%)occurduringalongergrowing season (+43 days). During the dormant season, stream water and nutrient loadings decrease. Net annual stream runoff (+8%) and DOC loading (+9%) increases are commensurate with the magnitude of the average increase of net annual precipitation (+7%). Net annual stream water and DOC loadings are primarily affected by increased dormant season precipitation. In contrast, decreased annual loading of stream nitrate (� 2%) reflects a larger effect of growing season controls on stream nitrate and the effects of lengthened growing seasons in a warmer climate. Our findings suggest that leaching of nitrate and DOC from catchment soils will be affected by anthropogenic climate forcing, thereby affecting the timing and magnitude of annual stream loadings in the northeastern United States.


Water Resources Research | 2015

Drivers of atmospheric nitrate processing and export in forested catchments

Lucy A. Rose; Stephen D. Sebestyen; Emily M. Elliott; Keisuke Koba

Increased deposition of reactive atmospheric N has resulted in the nitrogen saturation of many forested catchments worldwide. Isotope-based studies from multiple forest sites report low proportions (mean = ∼10%) of unprocessed atmospheric nitrate in streams during baseflow, regardless of N deposition or nitrate export rates. Given similar proportions of atmospheric nitrate in baseflow across a variety of sites and forest types, it is important to address the postdepositional drivers and processes that affect atmospheric nitrate transport and fate within catchments. In a meta-analysis of stable isotope-based studies, we examined the influence of methodological, biological, and hydrologic drivers on the export of atmospheric nitrate from forests. The δ18O- NO3− values in stream waters may increase, decrease, or not change with increasing discharge during stormflow conditions, and δ18O- NO3− values are generally higher in stormflow than baseflow. However, δ18O- NO3− values tended to increase with increasing baseflow discharge at all sites examined. To explain these differences, we present a conceptual model of hydrologic flowpath characteristics (e.g., saturation overland flow versus subsurface stormflow) that considers the influence of topography on landscape-stream hydrologic connectivity and delivery of unprocessed atmospheric nitrate to streams. Methodological biases resulting from differences in sampling frequency and stable isotope analytical techniques may further influence the perceived degree of unprocessed atmospheric nitrate export. Synthesis of results from numerous isotope-based studies shows that small proportions of unprocessed atmospheric nitrate are common in baseflow. However, hydrologic, topographic, and methodological factors are important drivers of actual or perceived elevated contributions of unprocessed atmospheric nitrate to streams.


Biogeochemistry | 2014

Ecoenzymatic stoichiometry and microbial processing of organic matter in northern bogs and fens reveals a common P-limitation between peatland types

Brian H. Hill; Colleen M. Elonen; Terri M. Jicha; Randall K. Kolka; LaRae P. Lehto; Stephen D. Sebestyen; Lindsey R. Seifert-Monson

We compared carbon (C), nitrogen (N), and phosphorus (P) concentrations in atmospheric deposition, runoff, and soils with microbial respiration [dehydrogenase (DHA)] and ecoenzyme activity (EEA) in an ombrotrophic bog and a minerotrophic fen to investigate the environmental drivers of biogeochemical cycling in peatlands at the Marcell Experimental Forest in northern Minnesota, USA. Ecoenzymatic stoichiometry was used to construct models for C use efficiency (CUE) and decomposition (M), and these were used to model respiration (Rm). Our goals were to determine the relative C, N, and P limitations on microbial processes and organic matter decomposition, and to identify environmental constraints on ecoenzymatic processes. Mean annual water, C, and P yields were greater in the fen, while N yields were similar in both the bog and fen. Soil chemistry differed between the bog and fen, and both watersheds exhibited significant differences among soil horizons. DHA and EEA differed by watersheds and soil horizons, CUE, M, and Rm differed only by soil horizons. C, N, or P limitations indicated by EEA stoichiometry were confirmed with orthogonal regressions of ecoenzyme pairs and enzyme vector analyses, and indicated greater N and P limitation in the bog than in the fen, with an overall tendency toward P-limitation in both the bog and fen. Ecoenzymatic stoichiometry, microbial respiration, and organic matter decomposition were responsive to resource availability and the environmental drivers of microbial metabolism, including those related to global climate changes.


Ecosystems | 2015

Invasive Earthworms Deplete Key Soil Inorganic Nutrients (Ca, Mg, K, and P) in a Northern Hardwood Forest

Kit Resner; Kyungsoo Yoo; Stephen D. Sebestyen; Anthony K. Aufdenkampe; Cindy M. Hale; Amy Lyttle; Alex E. Blum

Hardwood forests of the Great Lakes Region have evolved without earthworms since the Last Glacial Maximum, but are now being invaded by exotic earthworms introduced through agriculture, fishing, and logging. These exotic earthworms are known to increase soil mixing, affect soil carbon storage, and dramatically alter soil morphology. Here we show, using an active earthworm invasion chronosequence in a hardwood forest in northern Minnesota, that such disturbances by exotic earthworms profoundly affect inorganic nutrient cycles in soils. Soil nutrient elemental concentrations (Ca, Mg, K, and P) were normalized to biogeochemically inert Zr to quantify their losses and gains. This geochemical normalization revealed that elements were highly enriched in the A horizon of pre-invasion soils, suggesting tight biological recycling of the nutrients. In the early stage of invasion, epi-endogeic earthworm species appeared to have been responsible for further enriching the elements in the A horizon possibly by incorporating leaf organic matter (OM). The arrival of geophagous soil mixing endogeic earthworms, however, was associated with near complete losses of these enrichments, which was related to the loss of OM in soils. Our study highlights that elemental concentrations may not be sufficient to quantify biogeochemical effects of earthworms. The geochemical normalization approach, which has been widely used to study soil formation, may help when determining how invasive soil organisms affect soil elemental cycles. More generally, this approach has potential for much wider use in studies of belowground nutrient dynamics. The results support the existing ecological literature demonstrating that invasive earthworms may ultimately reduce productivity in formerly glaciated forests under climate change.


Environmental Research Letters | 2013

Trends in stream nitrogen concentrations for forested reference catchments across the USA

Alba Argerich; Sherri L. Johnson; Stephen D. Sebestyen; C.C. Rhoades; E. Greathouse; J.D. Knoepp; Mary Beth Adams; Gene E. Likens; John L. Campbell; William H. McDowell; Frederick N. Scatena; G.G. Ice

To examine whether stream nitrogen concentrations in forested reference catchments have changed over time and if patterns were consistent across the USA, we synthesized up to 44 yr of data collected from 22 catchments at seven USDA Forest Service Experimental Forests. Trends in stream nitrogen presented high spatial variability both among catchments at a site and among sites across the USA. We found both increasing and decreasing trends in monthly flow-weighted stream nitrate and ammonium concentrations. At a subset of the catchments, we found that the length and period of analysis influenced whether trends were positive, negative or non-significant. Trends also differed among neighboring catchments within several Experimental Forests, suggesting the importance of catchment-specific factors in determining nutrient exports. Over the longest time periods, trends were more consistent among catchments within sites, although there are fewer long-term records for analysis. These findings highlight the critical value of long-term, uninterrupted stream chemistry monitoring at a network of sites across the USA to elucidate patterns of change in nutrient concentrations at minimally disturbed forested sites.


Water Resources Research | 2014

Coupled hydrological and biogeochemical processes controlling variability of nitrogen species in streamflow during autumn in an upland forest

Stephen D. Sebestyen; James B. Shanley; Elizabeth W. Boyer; Carol Kendall; Daniel H. Doctor

Autumn is a season of dynamic change in forest streams of the northeastern United States due to effects of leaf fall on both hydrology and biogeochemistry. Few studies have explored how interactions of biogeochemical transformations, various nitrogen sources, and catchment flow paths affect stream nitrogen variation during autumn. To provide more information on this critical period, we studied (1) the timing, duration, and magnitude of changes to stream nitrate, dissolved organic nitrogen (DON), and ammonium concentrations; (2) changes in nitrate sources and cycling; and (3) source areas of the landscape that most influence stream nitrogen. We collected samples at higher temporal resolution for a longer duration than typical studies of stream nitrogen during autumn. This sampling scheme encompassed the patterns and extremes that occurred during base flow and stormflow events of autumn. Base flow nitrate concentrations decreased by an order of magnitude from 5.4 to 0.7 µmol L-1 during the week when most leaves fell from deciduous trees. Changes to rates of biogeochemical transformations during autumn base flow explained the low nitrate concentrations; in-stream transformations retained up to 72% of the nitrate that entered a stream reach. A decrease of in-stream nitrification coupled with heterotrophic nitrate cycling were primary factors in the seasonal nitrate decline. The period of low nitrate concentrations ended with a storm event in which stream nitrate concentrations increased by 25-fold. In the ensuing weeks, peak stormflow nitrate concentrations progressively decreased over closely spaced, yet similarly sized events. Most stormflow nitrate originated from nitrification in near-stream areas with occasional, large inputs of unprocessed atmospheric nitrate, which has rarely been reported for nonsnowmelt events. A maximum input of 33% unprocessed atmospheric nitrate to the stream occurred during one event. Large inputs of unprocessed atmospheric nitrate show direct and rapid effects on forest streams that may be widespread, although undocumented, throughout nitrogen-polluted temperate forests. In contrast to a week-long nitrate decline during peak autumn litterfall, base flow DON concentrations increased after leaf fall and remained high for 2 months. Dissolved organic nitrogen was hydrologically flushed to the stream from riparian soils during stormflow. In contrast to distinct seasonal changes in base flow nitrate and DON concentrations, ammonium concentrations were typically at or below the detection limit, similar to the rest of the year. Our findings reveal couplings among catchment flow paths, nutrient sources, and transformations that control seasonal extremes of stream nitrogen in forested landscapes.


Science of The Total Environment | 2014

Gaseous mercury fluxes from forest soils in response to forest harvesting intensity: A field manipulation experiment

Maxwell E. E. Mazur; Carl P. J. Mitchell; C.S. Eckley; Susan L. Eggert; Randy Kolka; Stephen D. Sebestyen; Edward B. Swain

Forest harvesting leads to changes in soil moisture, temperature and incident solar radiation, all strong environmental drivers of soil-air mercury (Hg) fluxes. Whether different forest harvesting practices significantly alter Hg fluxes from forest soils is unknown. We conducted a field-scale experiment in a northern Minnesota deciduous forest wherein gaseous Hg emissions from the forest floor were monitored after two forest harvesting prescriptions, a traditional clear-cut and a clearcut followed by biomass harvest, and compared to an un-harvested reference plot. Gaseous Hg emissions were measured in quadruplicate at four different times between March and November 2012 using Teflon dynamic flux chambers. We also applied enriched Hg isotope tracers and separately monitored their emission in triplicate at the same times as ambient measurements. Clearcut followed by biomass harvesting increased ambient Hg emissions the most. While significant intra-site spatial variability was observed, Hg emissions from the biomass harvested plot (180 ± 170 ng m(-2)d(-1)) were significantly greater than both the traditional clearcut plot (-40 ± 60 ng m(-2)d(-1)) and the un-harvested reference plot (-180 ± 115 ng m(-2)d(-1)) during July. This difference was likely a result of enhanced Hg(2+) photoreduction due to canopy removal and less shading from downed woody debris in the biomass harvested plot. Gaseous Hg emissions from more recently deposited Hg, as presumably representative of isotope tracer measurements, were not significantly influenced by harvesting. Most of the Hg tracer applied to the forest floor became sequestered within the ground vegetation and debris, leaf litter, and soil. We observed a dramatic lessening of tracer Hg emissions to near detection levels within 6 months. As post-clearcutting residues are increasingly used as a fuel or fiber resource, our observations suggest that gaseous Hg emissions from forest soils will increase, although it is not yet clear for how long such an effect will persist.

Collaboration


Dive into the Stephen D. Sebestyen's collaboration.

Top Co-Authors

Avatar

James B. Shanley

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Elizabeth W. Boyer

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Carol Kendall

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Randall K. Kolka

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Elon S. Verry

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Paul J. Hanson

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel H. Doctor

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

George R. Aiken

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Mary Beth Adams

United States Forest Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge