Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth W. Boyer is active.

Publication


Featured researches published by Elizabeth W. Boyer.


Biogeochemistry | 2002

Nitrogen retention in rivers: model development and application to watersheds in the northeastern U.S.A.

Sybil P. Seitzinger; Renée V. Styles; Elizabeth W. Boyer; Richard B. Alexander; Gilles Billen; Robert W. Howarth; Bernhard Mayer; Nico van Breemen

A regression model (RivR-N) was developed that predicts the proportion of N removed from streams and reservoirs as an inverse function of the water displacement time of the water body (ratio of water body depth to water time of travel). When appliedto 16 drainage networks in the eastern U.S.,the RivR-N model predicted that 37% to 76%of N input to these rivers is removed duringtransport through the river networks.Approximately half of that is removed in1st through 4th order streams whichaccount for 90% of the total stream length. The other half is removed in 5th orderand higher rivers which account for only about10% of the total stream length. Most Nremoved in these higher orders is predicted tooriginate from watershed loading to small andintermediate sized streams. The proportion ofN removed from all streams in the watersheds(37–76%) is considerably higher than theproportion of N input to an individual reachthat is removed in that reach (generally<20%) because of the cumulative effect ofcontinued nitrogen removal along the entireflow path in downstream reaches. Thisgenerally has not been recognized in previousstudies, but is critical to an evaluation ofthe total amount of N removed within a rivernetwork. At the river network scale,reservoirs were predicted to have a minimaleffect on N removal. A fairly modest decrease(<10 percentage points) in the N removed atthe river network scale was predicted when athird of the direct watershed loading was tothe two highest orders compared to a uniformloading.


Hydrological Processes | 1997

Response characteristics of DOC flushing in an alpine catchment

Elizabeth W. Boyer; George M. Hornberger; Kenneth E. Bencala; Diane M. McKnight

The spatial distribution of source areas and associated residence times of water in the catchment are significant factors controlling the annual cycles of dissolved organic carbon (DOC) concentration in Deer Creek (Summit County, Colorado). During spring snowmelt (April–August 1992), stream DOC concentrations increased with the rising limb of the hydrograph, peaked before maximum discharge, then declined rapidly as melting continued. We investigated catchment sources of DOC to streamflow, measuring DOC in tension lysimeters, groundwater wells, snow and streamflow. Lysimeter data indicate that near-surface soil horizons are a primary contributor of DOC to streamflow during spring snowmelt. Concentrations of DOC in the lysimeters decrease rapidly during the melt period, supporting the hypothesis that hydrological flushing of catchment soils is the primary mechanism affecting the temporal variation of DOC in Deer Creek. Time constants of DOC flushing, characterizing the exponential decay of DOC concentration in the upper soil horizon, ranged from 10 to 30 days for the 10 lysimeter sites. Differences in the rate of flushing are influenced by topographical position, with near-stream riparian soils flushed more quickly than soils located further upslope. Variation in the amount of distribution of accumulated snow, and asynchronous melting of the snowpack across the landscape, staggered the onset of the spring flush throughout the catchment, prolonging the period of increased concentrations of DOC in the stream. Streamflow integrates the catchment-scale flushing responses, yielding a time constant associated with the recession of DOC in the stream channel (84 days) that is significantly longer than the time constants observed for particular locations in the upper soil.


Journal of The American Water Resources Association | 2007

The Role of Headwater Streams in Downstream Water Quality

Richard B. Alexander; Elizabeth W. Boyer; Richard A. Smith; Gregory E. Schwarz; Richard B. Moore

Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth- and higher-order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water-resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters.


BioScience | 2003

Nitrogen Pollution in the Northeastern United States: Sources, Effects, and Management Options

Charles T. Driscoll; David Whitall; John D. Aber; Elizabeth W. Boyer; Mark S. Castro; Christopher S. Cronan; Christine L. Goodale; Peter M. Groffman; Charles S. Hopkinson; Kathleen F. Lambert; Gregory B. Lawrence; Scott V. Ollinger

Abstract The northeastern United States receives elevated inputs of anthropogenic nitrogen (N) largely from net imports of food and atmospheric deposition, with lesser inputs from fertilizer, net feed imports, and N fixation associated with leguminous crops. Ecological consequences of elevated N inputs to the Northeast include tropospheric ozone formation, ozone damage to plants, the alteration of forest N cycles, acidification of surface waters, and eutrophication in coastal waters. We used two models, PnET-BGC and WATERSN, to evaluate management strategies for reducing N inputs to forests and estuaries, respectively. Calculations with PnET-BGC suggest that aggressive reductions in N emissions alone will not result in marked improvements in the acid–base status of forest streams. WATERSN calculations showed that management scenarios targeting removal of N by wastewater treatment produce larger reductions in estuarine N loading than scenarios involving reductions in agricultural inputs or atmospheric emissions. Because N pollution involves multiple sources, management strategies targeting all major pollution sources will result in the greatest ecological benefits.


Biogeochemistry | 2004

Pre-industrial and contemporary fluxes of nitrogen through rivers: a global assessment based on typology

Pamela A. Green; Charles J. Vörösmarty; Michel Meybeck; James N. Galloway; Bruce J. Peterson; Elizabeth W. Boyer

This paper provides a global synthesis of reactive nitrogen (Nr) loading to the continental landmass and subsequent riverine nitrogen fluxes under a gradient of anthropogenic disturbance, from pre-industrial to contemporary. A mass balance model of nitrogen loading to the landmass is employed to account for transfers of Nr between atmospheric input sources (as food and feed products) and subsequent consumer output loads. This calculation produces a gridded surface of nitrogen loading ultimately mobilizable to aquatic systems (Nmob). Compared to the pre-industrial condition, nitrogen loading to the landmass has doubled from 111 to 223 Tg/year due to anthropogenic activities. This is particularly evident in the industrialized areas of the globe where contemporary levels of nitrogen loading have increased up to 6-fold in many areas. The quantity of nitrogen loaded to the landscape has shifted from a chiefly fixation-based system (89% of total loads) in the pre-industrial state to a heterogeneous mix in contemporary times where fertilizer (15%), livestock (24%) and atmospheric deposition (15%) dominate in many parts of the industrialized and developing world. A nitrogen transport model is developed from a global database of drainage basin characteristics and a comprehensive compendium of river chemistry observations. The model utilizes constituent delivery coefficients based on basin temperature and hydraulic residence times in soils, rivers, lakes and reservoirs to transport nitrogen loads to river mouths. Fluxes are estimated for total nitrogen, dissolved inorganic nitrogen, and total organic nitrogen. Model results show that total nitrogen fluxes from river basins have doubled from 21 Tg/year in the pre-industrial to 40 Tg/year in the contemporary period, with many industrialized areas of the globe showing an increase up to 5-fold. DIN fluxes from river basins have increased 6-fold from 2.4 Tg/year in the pre-industrial to 14.5 Tg/year in the contemporary period. The amount of nitrogen loading delivered to river mouth as flux is greatly influenced by both basin temperatures and hydraulic residence times suggesting a regional sensitivity to loading. The global, aggregate nitrogen retention on the continental land mass is 82%, with a range of 0–100% for individual basins. We also present the first seasonal estimates of riverine nitrogen fluxes at the global scale based on monthly discharge as the primary driver.


Ecological Applications | 2006

MODELING DENITRIFICATION IN TERRESTRIAL AND AQUATIC ECOSYSTEMS AT REGIONAL SCALES

Elizabeth W. Boyer; Richard B. Alexander; William J. Parton; Changsheng Li; Klaus Butterbach-Bahl; Simon D. Donner; R. Wayne Skaggs; Stephen J. Del Grosso

Quantifying where, when, and how much denitrification occurs on the basis of measurements alone remains particularly vexing at virtually all spatial scales. As a result, models have become essential tools for integrating current understanding of the processes that control denitrification with measurements of rate-controlling properties so that the permanent losses of N within landscapes can be quantified at watershed and regional scales. In this paper, we describe commonly used approaches for modeling denitrification and N cycling processes in terrestrial and aquatic ecosystems based on selected examples from the literature. We highlight future needs for developing complementary measurements and models of denitrification. Most of the approaches described here do not explicitly simulate microbial dynamics, but make predictions by representing the environmental conditions where denitrification is expected to occur, based on conceptualizations of the N cycle and empirical data from field and laboratory investigations of the dominant process controls. Models of denitrification in terrestrial ecosystems include generally similar rate-controlling variables, but vary in their complexity of the descriptions of natural and human-related properties of the landscape, reflecting a range of scientific and management perspectives. Models of denitrification in aquatic ecosystems range in complexity from highly detailed mechanistic simulations of the N cycle to simpler source-transport models of aggregate N removal processes estimated with empirical functions, though all estimate aquatic N removal using first-order reaction rate or mass-transfer rate expressions. Both the terrestrial and aquatic modeling approaches considered here generally indicate that denitrification is an important and highly substantial component of the N cycle over large spatial scales. However, the uncertainties of model predictions are large. Future progress will be linked to advances in field measurements, spatial databases, and model structures.


Oecologia | 2003

Merging aquatic and terrestrial perspectives of nutrient biogeochemistry.

Nancy B. Grimm; Sarah E. Gergel; William H. McDowell; Elizabeth W. Boyer; C. Lisa Dent; Peter M. Groffman; Stephen C. Hart; Judson W. Harvey; Carol A. Johnston; Emilio Mayorga; Michael E. McClain; Gilles Pinay

Although biogeochemistry is an integrative discipline, terrestrial and aquatic subdisciplines have developed somewhat independently of each other. Physical and biological differences between aquatic and terrestrial ecosystems explain this history. In both aquatic and terrestrial biogeochemistry, key questions and concepts arise from a focus on nutrient limitation, ecosystem nutrient retention, and controls of nutrient transformations. Current understanding is captured in conceptual models for different ecosystem types, which share some features and diverge in other ways. Distinctiveness of subdisciplines has been appropriate in some respects and has fostered important advances in theory. On the other hand, lack of integration between aquatic and terrestrial biogeochemistry limits our ability to deal with biogeochemical phenomena across large landscapes in which connections between terrestrial and aquatic elements are important. Separation of the two approaches also has not served attempts to scale up or to estimate fluxes from large areas based on plot measurements. Understanding connectivity between the two system types and scaling up biogeochemical information will rely on coupled hydrologic and ecological models, and may be critical for addressing environmental problems associated with locally, regionally, and globally altered biogeochemical cycles.


Water Resources Research | 2008

Sources, transformations, and hydrological processes that control stream nitrate and dissolved organic matter concentrations during snowmelt in an upland forest

Stephen D. Sebestyen; Elizabeth W. Boyer; James B. Shanley; Carol Kendall; Daniel H. Doctor; George R. Aiken; Nobuhito Ohte

We explored catchment processes that control stream nutrient concentrations at an upland forest in northeastern Vermont, USA, where inputs of nitrogen via atmospheric deposition are among the highest in the nation and affect ecosystem functioning. We traced sources of water, nitrate, and dissolved organic matter (DOM) using stream water samples collected at high frequency during spring snowmelt. Hydrochemistry, isotopic tracers, and end-member mixing analyses suggested the timing, sources, and source areas from which water and nutrients entered the stream. Although stream-dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) both originated from leaching of soluble organic matter, flushing responses between these two DOM components varied because of dynamic shifts of hydrological flow paths and sources that supply the highest concentrations of DOC and DON.


Ecological Modelling | 1996

Overview of a simple model describing variation of dissolved organic carbon in an upland catchment

Elizabeth W. Boyer; George M. Hornberger; Kenneth E. Bencala; Diane M. McKnight

Abstract Hydrological mechanisms controlling the variation of dissolved organic carbon (DOC) were investigated in the Deer Creek catchment located near Montezuma, CO. Patterns of DOC in streamflow suggested that increased flows through the upper soil horizon during snowmelt are responsible for flushing this DOC-enriched interstitial water to the streams. We examined possible hydrological mechanisms to explain the observed variability of DOC in Deer Creek by first simulating the hydrological response of the catchment using TOPMODEL and then routing the predicted flows through a simple model that accounted for temporal changes in DOC. Conceptually the DOC model can be taken to represent a terrestrial (soil) reservoir in which DOC builds up during low flow periods and is flushed out when infiltrating meltwaters cause the water table to rise into this “reservoir”. Concentrations of DOC measured in the upper soil and in streamflow were compared to model simulations. The simulated DOC response provides a reasonable reproduction of the observed dynamics of DOC in the stream at Deer Creek.


Canadian Journal of Forest Research | 2009

Consequences of climate change for biogeochemical cycling in forests of northeastern North America.

John L. Campbell; Lindsey E. Rustad; Elizabeth W. Boyer; S. F. Christopher; Charles T. Driscoll; Ivan J. Fernandez; Peter M. Groffman; Daniel Houle; Jana KiekbuschJ. Kiekbusch; Alison H. Magill; Myron J. Mitchell; Scott V. Ollinger

A critical component of assessing the impacts of climate change on forest ecosystems involves understanding associated changes in the biogeochemical cycling of elements. Evidence from research on northeastern North American forests shows that direct effects of climate change will evoke changes in biogeochemical cycling by altering plant physiology, forest productivity, and soil physical, chemical, and biological processes. Indirect effects, largely mediated by changes in species composition, length of growing season, and hydrology, will also be important. The case study presented here uses the quantitative biogeochemical model PnET-BGC to test assumptions about the direct and indirect effects of climate change on a northern hardwood forest ecosystem. Modeling results indicate an overall increase in net primary production due to a longer growing season, an increase in NO3– leaching due to large increases in net mineralization and nitrification, and slight declines in mineral weathering due to a reduction i...

Collaboration


Dive into the Elizabeth W. Boyer's collaboration.

Top Co-Authors

Avatar

Carol Kendall

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Stephen D. Sebestyen

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

James B. Shanley

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Richard B. Alexander

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Douglas A. Burns

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory E. Schwarz

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Heather E. Golden

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Diane M. McKnight

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge