Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen D. Turner is active.

Publication


Featured researches published by Stephen D. Turner.


Biology of Reproduction | 2001

Essential Role of Neutrophils in Germ Cell-Specific Apoptosis Following Ischemia/Reperfusion Injury of the Mouse Testis

Jeffrey J. Lysiak; Stephen D. Turner; Quoc An T. Nguyen; Klaus Ley; Terry T. Turner

Abstract This study investigates the role of neutrophils in ischemia-induced aspermatogenesis in the mouse. Previous studies in the rat have demonstrated that ischemia-inducing testicular torsion followed by torsion repair and reperfusion resulted in germ cell-specific apoptosis. This was correlated with an increase in neutrophil adhesion to subtunical venules, an increase in reactive oxygen species, and increased expression of several apoptosis-associated molecules. In the present investigation, wild-type C57BL/6 mice were subjected to various degrees and duration of testicular torsion. A torsion of 720° for 2 h caused disruption of the seminiferous epithelium and significantly reduced testis weight and daily sperm production. An immunohistochemical method specific for apoptotic nuclei indicated that these effects were due to germ cell-specific apoptosis. An increase in myeloperoxidase (MPO) activity and an increase in the number of neutrophils adhering to testicular subtunical venules after torsion repair/reperfusion demonstrated an increase in neutrophil recruitment to the testis. In contrast, E-selectin knockout mice and wild-type mice rendered neutropenic showed a significant decrease in neutrophil recruitment as evidenced by MPO activity and microscopic examination of subtunical venules. Importantly, germ cell-specific apoptosis was also reduced. Thus, germ cell-specific apoptosis is observed after ischemia/reperfusion of the murine testis, and this apoptosis is directly linked to the recruitment of neutrophils to subtunical venules. Endothelial cell adhesion molecules, particularly E-selectin, play an important role in mediating this pathology.


Biology of Reproduction | 2000

Molecular Pathway of Germ Cell Apoptosis Following Ischemia/Reperfusion of the Rat Testis

Jeffrey J. Lysiak; Stephen D. Turner; Terry T. Turner

Abstract The present study investigates the molecular apoptotic pathway in germ cells following acute ischemia of the rat testis. Rats were subjected to ischemia-inducing torsion and testes were harvested after reperfusion. Apoptotic cells were identified with an antibody to single-stranded DNA. Seminiferous tubule RNA was examined by RNase protection assay or by reverse transcriptase-polymerase chain reaction (RT-PCR) for the presence and regulation of apoptotic molecules. Proteins from seminiferous tubules were used for Western blot analysis of cytochrome c. Germ cell apoptosis was maximal at 24 h after repair of torsion. Germ cells in stages II–III of the seminiferous epithelium cycle were the predominant early responders. The RNase protection assays revealed that Bcl-XL was the prominent mRNA species. Caspases 1, 2, 3, and Bax mRNA were consistently upregulated; however, the time of upregulation after torsion was variable. The Bcl-XL and Bcl-XS mRNAs were less consistently upregulated and there was no evidence for upregulation of Fas or Bcl-2. Fas ligand (FasL) was not detected by RNase protection assay, but RT-PCR revealed a significant increase in FasL expression 4 h after the repair of torsion. Western blot analysis for cytochrome c release demonstrated a significant increase 4 h after the repair of torsion. Results suggest that germ cell apoptosis following ischemia/reperfusion of the rat testis is initiated through the mitochondria-associated molecule Bax as well as Fas-FasL interactions.


Journal of Social Structure | 2018

qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots

Stephen D. Turner

Summary: Genome-wide association studies (GWAS) have identified thousands of human trait-associated single nucleotide polymorphisms. Here, I describe a freely available R package for visualizing GWAS results using Q-Q and manhattan plots. The qqman package enables the flexible creation of manhattan plots, both genome-wide and for single chromosomes, with optional highlighting of SNPs of interest. Availability: qqman is released under the GNU General Public License, and is freely available on the Comprehensive R Archive Network (http://cran.r-project.org/package=qqman). The source code is available on GitHub (https://github.com/stephenturner/qqman). Contact: [email protected]


Nature | 2016

Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour

Anthony J. Filiano; Yang Xu; Nicholas J. Tustison; Rachel Marsh; Wendy Baker; Igor Smirnov; Christopher C. Overall; Sachin P. Gadani; Stephen D. Turner; Zhiping Weng; Sayeda Najamussahar Peerzade; Hao Chen; Kevin Lee; Mark P. Beenhakker; Vladimir Litvak; Jonathan Kipnis

Immune dysfunction is commonly associated with several neurological and mental disorders. Although the mechanisms by which peripheral immunity may influence neuronal function are largely unknown, recent findings implicate meningeal immunity influencing behaviour, such as spatial learning and memory. Here we show that meningeal immunity is also critical for social behaviour; mice deficient in adaptive immunity exhibit social deficits and hyper-connectivity of fronto-cortical brain regions. Associations between rodent transcriptomes from brain and cellular transcriptomes in response to T-cell-derived cytokines suggest a strong interaction between social behaviour and interferon-γ (IFN-γ)-driven responses. Concordantly, we demonstrate that inhibitory neurons respond to IFN-γ and increase GABAergic (γ-aminobutyric-acid) currents in projection neurons, suggesting that IFN-γ is a molecular link between meningeal immunity and neural circuits recruited for social behaviour. Meta-analysis of the transcriptomes of a range of organisms reveals that rodents, fish, and flies elevate IFN-γ/JAK-STAT-dependent gene signatures in a social context, suggesting that the IFN-γ signalling pathway could mediate a co-evolutionary link between social/aggregation behaviour and an efficient anti-pathogen response. This study implicates adaptive immune dysfunction, in particular IFN-γ, in disorders characterized by social dysfunction and suggests a co-evolutionary link between social behaviour and an anti-pathogen immune response driven by IFN-γ signalling.


Cell Metabolism | 2014

Glucagon Regulates Hepatic Kisspeptin to Impair Insulin Secretion

Woo Jin Song; Prosenjit Mondal; Andrew Wolfe; Laura C. Alonso; Rachel E. Stamateris; Benny W.T. Ong; Owen C. Lim; Kil S. Yang; Sally Radovick; Horacio J. Novaira; Emily Farber; Charles R. Farber; Stephen D. Turner; Mehboob A. Hussain

Early in the pathogenesis of type 2 diabetes mellitus (T2DM), dysregulated glucagon secretion from pancreatic α cells occurs prior to impaired glucose-stimulated insulin secretion (GSIS) from β cells. However, whether hyperglucagonemia is causally linked to β cell dysfunction remains unclear. Here we show that glucagon stimulates via cAMP-PKA-CREB signaling hepatic production of the neuropeptide kisspeptin1, which acts on β cells to suppress GSIS. Synthetic kisspeptin suppresses GSIS in vivo in mice and from isolated islets in a kisspeptin1 receptor-dependent manner. Kisspeptin1 is increased in livers and in serum from humans with T2DM and from mouse models of diabetes mellitus. Importantly, liver Kiss1 knockdown in hyperglucagonemic, glucose-intolerant, high-fat-diet fed, and Lepr(db/db) mice augments GSIS and improves glucose tolerance. These observations indicate a hormonal circuit between the liver and the endocrine pancreas in glycemia regulation and suggest in T2DM a sequential link between hyperglucagonemia via hepatic kisspeptin1 to impaired insulin secretion.


Antimicrobial Agents and Chemotherapy | 2015

Klebsiella pneumoniae carbapenemase (KPC) producing K. pneumoniae at a Single Institution: Insights into Endemicity from Whole Genome Sequencing

Amy J. Mathers; Nicole Stoesser; Anna E. Sheppard; Louise Pankhurst; Adam Giess; Anthony J. Yeh; Xavier Didelot; Stephen D. Turner; Robert Sebra; Andrew Kasarskis; Tim Peto; Derrick W. Crook; Costi D. Sifri

ABSTRACT The global emergence of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-Kp) multilocus sequence type ST258 is widely recognized. Less is known about the molecular and epidemiological details of non-ST258 K. pneumoniae in the setting of an outbreak mediated by an endemic plasmid. We describe the interplay of blaKPC plasmids and K. pneumoniae strains and their relationship to the location of acquisition in a U.S. health care institution. Whole-genome sequencing (WGS) analysis was applied to KPC-Kp clinical isolates collected from a single institution over 5 years following the introduction of blaKPC in August 2007, as well as two plasmid transformants. KPC-Kp from 37 patients yielded 16 distinct sequence types (STs). Two novel conjugative blaKPC plasmids (pKPC_UVA01 and pKPC_UVA02), carried by the hospital index case, accounted for the presence of blaKPC in 21/37 (57%) subsequent cases. Thirteen (35%) isolates represented an emergent lineage, ST941, which contained pKPC_UVA01 in 5/13 (38%) and pKPC_UVA02 in 6/13 (46%) cases. Seven (19%) isolates were the epidemic KPC-Kp strain, ST258, mostly imported from elsewhere and not carrying pKPC_UVA01 or pKPC_UVA02. Using WGS-based analysis of clinical isolates and plasmid transformants, we demonstrate the unexpected dispersal of blaKPC to many non-ST258 lineages in a hospital through spread of at least two novel blaKPC plasmids. In contrast, ST258 KPC-Kp was imported into the institution on numerous occasions, with other blaKPC plasmid vectors and without sustained transmission. Instead, a newly recognized KPC-Kp strain, ST941, became associated with both novel blaKPC plasmids and spread locally, making it a future candidate for clinical persistence and dissemination.


Clinical Microbiology Reviews | 2015

Whole-Genome Sequencing in Outbreak Analysis

Carol A. Gilchrist; Stephen D. Turner; Margaret F. Riley; William A. Petri; Erik L. Hewlett

SUMMARY In addition to the ever-present concern of medical professionals about epidemics of infectious diseases, the relative ease of access and low cost of obtaining, producing, and disseminating pathogenic organisms or biological toxins mean that bioterrorism activity should also be considered when facing a disease outbreak. Utilization of whole-genome sequencing (WGS) in outbreak analysis facilitates the rapid and accurate identification of virulence factors of the pathogen and can be used to identify the path of disease transmission within a population and provide information on the probable source. Molecular tools such as WGS are being refined and advanced at a rapid pace to provide robust and higher-resolution methods for identifying, comparing, and classifying pathogenic organisms. If these methods of pathogen characterization are properly applied, they will enable an improved public health response whether a disease outbreak was initiated by natural events or by accidental or deliberate human activity. The current application of next-generation sequencing (NGS) technology to microbial WGS and microbial forensics is reviewed.


Mbio | 2014

Characterization of the nasopharyngeal microbiota in health and during rhinovirus challenge

E. Kaitlynn Allen; Alex F. Koeppel; J. Owen Hendley; Stephen D. Turner; Birgit Winther; Michèle M. Sale

BackgroundThe bacterial communities of the nasopharynx play an important role in upper respiratory tract infections (URTIs). Our study represents the first survey of the nasopharynx during a known, controlled viral challenge. We aimed to gain a better understanding of the composition and dynamics of the nasopharyngeal microbiome during viral infection.MethodsRhinovirus illnesses were induced by self-inoculation using the finger to nose or eye natural transmission route in ten otherwise healthy young adults. Nasal lavage fluid samples (NLF) samples were collected at specific time points before, during, and following experimental rhinovirus inoculation. Bacterial DNA from each sample (N = 97 from 10 subjects) was subjected to 16S rRNA sequencing by amplifying the V1-V2 hypervariable region followed by sequencing using the 454-FLX platform.ResultsThis survey of the nasopharyngeal microbiota revealed a highly complex microbial ecosystem. Taxonomic composition varied widely between subjects and between time points of the same subject. We also observed significantly higher diversity in not infected individuals compared to infected individuals. Two genera – Neisseria and Propionibacterium – differed significantly between infected and not infected individuals. Certain phyla, including Firmicutes, Actinobacteria, and Proteobacteria, were detected in all samples.ConclusionsOur results reveal the complex and diverse nature of the nasopharyngeal microbiota in both healthy and viral-challenged adults. Although some phyla were common to all samples, differences in levels of diversity and selected phyla were detected between infected and uninfected participants. Deeper, species-level metagenomic sequencing in a larger sample is warranted.


Nature | 2016

Macrophages redirect phagocytosis by non-professional phagocytes and influence inflammation

Claudia Z. Han; Ignacio J. Juncadella; Jason M. Kinchen; Monica W. Buckley; Alexander L. Klibanov; Kelly A. Dryden; Suna Onengut-Gumuscu; Uta Erdbrügger; Stephen D. Turner; Yun M. Shim; Kenneth S. K. Tung; Kodi S. Ravichandran

Professional phagocytes (such as macrophages) and non-professional phagocytes (such as epithelial cells) clear billions of apoptotic cells and particles on a daily basis. Although professional and non-professional macrophages reside in proximity in most tissues, whether they communicate with each other during cell clearance, and how this might affect inflammation, is not known. Here we show that macrophages, through the release of a soluble growth factor and microvesicles, alter the type of particles engulfed by non-professional phagocytes and influence their inflammatory response. During phagocytosis of apoptotic cells or in response to inflammation-associated cytokines, macrophages released insulin-like growth factor 1 (IGF-1). The binding of IGF-1 to its receptor on non-professional phagocytes redirected their phagocytosis, such that uptake of larger apoptotic cells was reduced whereas engulfment of microvesicles was increased. IGF-1 did not alter engulfment by macrophages. Macrophages also released microvesicles, whose uptake by epithelial cells was enhanced by IGF-1 and led to decreased inflammatory responses by epithelial cells. Consistent with these observations, deletion of IGF-1 receptor in airway epithelial cells led to exacerbated lung inflammation after allergen exposure. These genetic and functional studies reveal that IGF-1- and microvesicle-dependent communication between macrophages and epithelial cells can critically influence the magnitude of tissue inflammation in vivo.


PLOS ONE | 2012

Predicting total, abdominal, visceral and hepatic adiposity with circulating biomarkers in Caucasian and Japanese American women.

Unhee Lim; Stephen D. Turner; Adrian A. Franke; Robert V. Cooney; Lynne R. Wilkens; Thomas Ernst; Cheryl L. Albright; Rachel Novotny; Linda Chang; Laurence N. Kolonel; Suzanne P. Murphy; Loic Le Marchand

Background Characterization of abdominal and intra-abdominal fat requires imaging, and thus is not feasible in large epidemiologic studies. Objective We investigated whether biomarkers may complement anthropometry (body mass index [BMI], waist circumference [WC], and waist-hip ratio [WHR]) in predicting the size of the body fat compartments by analyzing blood biomarkers, including adipocytokines, insulin resistance markers, sex steroid hormones, lipids, liver enzymes and gastro-neuropeptides. Methods Fasting levels of 58 blood markers were analyzed in 60 healthy, Caucasian or Japanese American postmenopausal women who underwent anthropometric measurements, dual energy X-ray absorptiometry (DXA), and abdominal magnetic resonance imaging. Total, abdominal, visceral and hepatic adiposity were predicted based on anthropometry and the biomarkers using Random Forest models. Results Total body fat was well predicted by anthropometry alone (R2 = 0.85), by the 5 best predictors from the biomarker model alone (leptin, leptin-adiponectin ratio [LAR], free estradiol, plasminogen activator inhibitor-1 [PAI1], alanine transaminase [ALT]; R2 = 0.69), or by combining these 5 biomarkers with anthropometry (R2 = 0.91). Abdominal adiposity (DXA trunk-to-periphery fat ratio) was better predicted by combining the two types of predictors (R2 = 0.58) than by anthropometry alone (R2 = 0.53) or the 5 best biomarkers alone (25(OH)-vitamin D3, insulin-like growth factor binding protein-1 [IGFBP1], uric acid, soluble leptin receptor [sLEPR], Coenzyme Q10; R2 = 0.35). Similarly, visceral fat was slightly better predicted by combining the predictors (R2 = 0.68) than by anthropometry alone (R2 = 0.65) or the 5 best biomarker predictors alone (leptin, C-reactive protein [CRP], LAR, lycopene, vitamin D3; R2 = 0.58). Percent liver fat was predicted better by the 5 best biomarker predictors (insulin, sex hormone binding globulin [SHBG], LAR, alpha-tocopherol, PAI1; R2 = 0.42) or by combining the predictors (R2 = 0.44) than by anthropometry alone (R2 = 0.29). Conclusion The predictive ability of anthropometry for body fat distribution may be enhanced by measuring a small number of biomarkers. Studies to replicate these data in men and other ethnic groups are warranted.

Collaboration


Dive into the Stephen D. Turner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carol A. Gilchrist

University of Virginia Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nichola Cruickshanks

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge