Stephen Depuydt
Ghent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephen Depuydt.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Ine Pertry; Kateřina Václavíková; Stephen Depuydt; Petr Galuszka; Lukáš Spíchal; Wim Temmerman; Elisabeth Stes; Thomas Schmülling; Tatsuo Kakimoto; Marc Van Montagu; Miroslav Strnad; Marcelle Holsters; Petr Tarkowski; Danny Vereecke
Decades ago, the importance of cytokinins (CKs) during Rhodococcus fascians pathology had been acknowledged, and an isopentenyltransferase gene had been characterized in the fas operon of the linear virulence plasmid, but hitherto, no specific CK(s) could be associated with virulence. We show that the CK receptors AHK3 and AHK4 of Arabidopsis thaliana are essential for symptom development, and that the CK perception machinery is induced upon infection, underlining its central role in the symptomatology. Three classical CKs [isopentenyladenine, trans-zeatin, and cis-zeatin (cZ)] and their 2-methylthio (2MeS)-derivatives were identified by CK profiling of both the pathogenic R. fascians strain D188 and its nonpathogenic derivative D188–5. However, the much higher CK levels in strain D188 suggest that the linear plasmid is responsible for the virulence-associated production. All R. fascians CKs were recognized by AHK3 and AHK4, and, although they individually provoked typical CK responses in several bioassays, the mixture of bacterial CKs exhibited clear synergistic effects. The cis- and 2MeS-derivatives were poor substrates of the apoplastic CK oxidase/dehydrogenase enzymes and the latter were not cytotoxic at high concentrations. Consequently, the accumulating 2MeScZ (and cZ) in infected Arabidopsis tissue contribute to the continuous stimulation of tissue proliferation. Based on these results, we postulate that the R. fascians pathology is based on the local and persistent secretion of an array of CKs.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Stephen Depuydt; Antia Rodriguez-Villalon; Luca Santuari; Céline Wyser-Rmili; Laura Ragni; Christian S. Hardtke
Peptide signaling presumably occupies a central role in plant development, yet only few concrete examples of receptor-ligand pairs that act in the context of specific differentiation processes have been described. Here we report that second-site null mutations in the Arabidopsis leucine-rich repeat receptor-like kinase gene barely any meristem 3 (BAM3) perfectly suppress the postembryonic root meristem growth defect and the associated perturbed protophloem development of the brevis radix (brx) mutant. The roots of bam3 mutants specifically resist growth inhibition by the CLAVATA3/ENDOSPERM SURROUNDING REGION 45 (CLE45) peptide ligand. WT plants transformed with a construct for ectopic overexpression of CLE45 could not be recovered, with the exception of a single severely dwarfed and sterile plant that eventually died. By contrast, we obtained numerous transgenic bam3 mutants transformed with the same construct. These transgenic plants displayed a WT phenotype, however, supporting the notion that CLE45 is the likely BAM3 ligand. The results correlate with the observation that external CLE45 application represses protophloem differentiation in WT, but not in bam3 mutants. BAM3, BRX, and CLE45 are expressed in a similar spatiotemporal trend along the developing protophloem, up to the end of the transition zone. Induction of BAM3 expression upon CLE45 application, ectopic overexpression of BAM3 in brx root meristems, and laser ablation experiments suggest that intertwined regulatory activity of BRX, BAM3, and CLE45 could be involved in the proper transition of protophloem cells from proliferation to differentiation, thereby impinging on postembryonic growth capacity of the root meristem.
Plant Physiology | 2009
Stephen Depuydt; Sandra Trenkamp; Alisdair R. Fernie; Samira Elftieh; Jean-Pierre Renou; Marnik Vuylsteke; Marcelle Holsters; Danny Vereecke
Rhodococcus fascians is a Gram-positive phytopathogen that induces shooty hyperplasia on its hosts through the secretion of cytokinins. Global transcriptomics using microarrays combined with profiling of primary metabolites on infected Arabidopsis (Arabidopsis thaliana) plants revealed that this actinomycete modulated pathways to convert its host into a niche. The transcript data demonstrated that R. fascians leaves a very characteristic mark on Arabidopsis with a pronounced cytokinin response illustrated by the activation of cytokinin perception, signal transduction, and homeostasis. The microarray data further suggested active suppression of an oxidative burst during the R. fascians pathology, and comparison with publicly available transcript data sets implied a central role for auxin in the prevention of plant defense activation. Gene Ontology categorization of the differentially expressed genes hinted at a significant impact of infection on the primary metabolism of the host, which was confirmed by subsequent metabolite profiling. The much higher levels of sugars and amino acids in infected plants are presumably accessed by the bacteria as carbon and nitrogen sources to support epiphytic and endophytic colonization. Hexoses, accumulating from a significantly increased invertase activity, possibly inhibited the expression of photosynthesis genes and photosynthetic activity in infected leaves. Altogether, these changes are indicative of sink development in symptomatic tissues. The metabolomics data furthermore point to the possible occurrence of secondary signaling during the interaction, which might contribute to symptom development. These data are placed in the context of regulation of bacterial virulence gene expression, suppression of defense, infection phenotype, and niche establishment.
Molecular Plant-microbe Interactions | 2010
Ine Pertry; Katerina Václavíková; Markéta Gemrotová; Lukáš Spíchal; Petr Galuszka; Stephen Depuydt; Wim Temmerman; Elisabeth Stes; Annick De Keyser; Michael Riefler; Stefania Biondi; Ondrej Novak; Thomas Schmülling; Miroslav Strnad; Petr Tarkowski; Marcelle Holsters; Danny Vereecke
The phytopathogenic actinomycete Rhodococcus fascians D188 relies mainly on the linear plasmid-encoded fas operon for its virulence. The bacteria secrete six cytokinin bases that synergistically redirect the developmental program of the plant to stimulate proliferation of young shoot tissue, thus establishing a leafy gall as a niche. A yeast-based cytokinin bioassay combined with cytokinin profiling of bacterial mutants revealed that the fas operon is essential for the enhanced production of isopentenyladenine, trans-zeatin, cis-zeatin, and the 2-methylthio derivatives of the zeatins. Cytokinin metabolite data and the demonstration of the enzymatic activities of FasD (isopentenyltransferase), FasE (cytokinin oxidase/dehydrogenase), and FasF (phosphoribohydrolase) led us to propose a pathway for the production of the cytokinin spectrum. Further evaluation of the pathogenicity of different fas mutants and of fas gene expression and cytokinin signal transduction upon infection implied that the secretion of the cytokinin mix is a highly dynamic process, with the consecutive production of a tom initiation wave followed by a maintenance flow.
Plant Physiology | 2008
Stephen Depuydt; Karel Doležal; Mieke Van Lijsebettens; Thomas Moritz; Marcelle Holsters; Danny Vereecke
The biotrophic actinomycete Rhodococcus fascians has a profound impact on plant development and a common aspect of the symptomatology is the deformation of infected leaves. In Arabidopsis (Arabidopsis thaliana), the serrated leaf margins formed upon infection resemble the leaf phenotype of transgenic plants with ectopic expression of KNOTTED-like homeobox (KNOX) genes. Through transcript profiling, we demonstrate that class-I KNOX genes are transcribed in symptomatic leaves. Functional analysis revealed that BREVIPEDICELLUS/KNOTTED-LIKE1 and mainly SHOOT MERISTEMLESS were essential for the observed leaf dissection. However, these results also positioned the KNOX genes downstream in the signaling cascade triggered by R. fascians infection. The much faster activation of ARABIDOPSIS RESPONSE REGULATOR5 and the establishment of homeostatic and feedback mechanisms to control cytokinin (CK) levels support the overrepresentation of this hormone in infected plants due to the secretion by the pathogen, thereby placing the CK response high up in the cascade. Hormone measurements show a net decrease of tested CKs, indicating either that secretion by the bacterium and degradation by the plant are in balance, or, as suggested by the strong reaction of 35S:CKX plants, that other CKs are at play. At early time points of the interaction, activation of gibberellin 2-oxidase presumably installs a local hormonal setting favorable for meristematic activity that provokes leaf serrations. The results are discussed in the context of symptom development, evasion of plant defense, and the establishment of a specific niche by R. fascians.
Planta | 2013
Amanda Rasmussen; Stephen Depuydt; Sofie Goormachtig; Danny Geelen
Strigolactones were originally discovered to be involved in parasitic weed germination, in mycorrhizal association and in the control of shoot architecture. Despite their clear role in rhizosphere signaling, comparatively less attention has been given to the belowground function of strigolactones on plant development. However, research has revealed that strigolactones play a key role in the regulation of the root system including adventitious roots, primary root length, lateral roots, root hairs and nodulation. Here, we review the recent progress regarding strigolactone regulation of the root system and the antagonism and interplay with other hormones.
Molecular Plant Pathology | 2006
Carmen Simón-Mateo; Stephen Depuydt; Carmem-Lara de Oliveira Manes; Filip Cnudde; Marcelle Holsters; Koen Goethals; Danny Vereecke
SUMMARY Rhodococcus fascians is a Gram-positive bacterium that interacts with many plant species and induces multiple shoots through a combination of activation of dormant axillary meristems and de novo meristem formation. Although phenotypic analysis of the symptoms of infected plants clearly demonstrates a disturbance of the phytohormonal balance and an activation of the cell cycle, the actual mechanism of symptom development and the targets of the bacterial signals are unknown. To elucidate the molecular pathways that are responsive to R. fascians infection, differential display was performed on Nicotiana tabacum as a host. Four differentially expressed genes could be identified that putatively encode a senescence-associated protein, a gibberellin 2-oxidase, a P450 monooxygenase and a proline dehydrogenase. The differential expression of the three latter genes was confirmed on infected Arabidopsis thaliana plants by quantitative reverse transcription polymerase chain reactions, supporting their general function in R. fascians-induced symptom development. The role of these genes in hormone metabolism, especially of gibberellin and abscisic acid, in breaking apical dominance and in activating axillary meristems, which are processes associated with symptom development, is discussed.
Plant Physiology | 2009
Stephen Depuydt; Lieven De Veylder; Marcelle Holsters; Danny Vereecke
The phytopathogenic actinomycete Rhodococcus fascians induces neoplastic shooty outgrowths on infected hosts. Upon R. fascians infection of Arabidopsis (Arabidopsis thaliana), leaves are formed with small narrow lamina and serrated margins. These symptomatic leaves exhibit reduced tissue differentiation, display more but smaller cells that do not endoreduplicate, and accumulate in the G1 phase of the cell cycle. Together, these features imply that leaf growth occurs primarily through mitotic cell division and not via cell expansion. Molecular analysis revealed that cell cycle gene expression is activated continuously throughout symptomatic leaf development, ensuring persistent mitotic cycling and inhibition of cell cycle exit. The transition at the two major cell cycle checkpoints is stimulated as a direct consequence of the R. fascians signals. The extremely reduced phenotypical response of a cyclind3;1-3 triple knockout mutant indicates that the D-type cyclin/retinoblastoma/E2F transcription factor pathway, as a major mediator of cell growth and cell cycle progression, plays a key role in symptom development and is instrumental for the sustained G1-to-S and G2-to-M transitions during symptomatic leaf growth.
Water Research | 2017
Lalit K. Pandey; Elizabeth A. Bergey; Jie Lyu; Jihae Park; Soyeon Choi; Hojun Lee; Stephen Depuydt; Young-Tae Oh; Sung-Mo Lee; Taejun Han
Diatoms are regularly used for bioassessment and ecotoxicological studies in relation to environmental and anthropogenic disturbances. Traditional taxonomical diatom parameters (cell counts, biovolume estimates, species richness, diversity indices and metrics using sensitive and tolerant diatom species) are regularly used for these studies. In the same context, very less focus was given on new endpoints of diatoms (life-forms, nuclear anomalies, alteration in photosynthetic apparatus shape, motility, lipid bodies, size reduction and deformities), in spite of their numerous merits, such as, their easiness, quickness, cheapness, global acceptation and no especial training in diatom taxonomy. In this review we analyzed 202 articles (from lab and field studies), with the aim to investigate the bioassessment and ecotoxicological advancement taken place in diatom research especially in terms of exploring new endpoints along with the traditional taxonomical parameters in a perspective which can greatly enhance the evaluation of fluvial ecosystem quality for biomonitoring practices.
New Phytologist | 2015
Amélia Amiguet‐Vercher; Luca Santuari; Miguel González-Guzmán; Stephen Depuydt; Pedro L. Rodriguez; Christian S. Hardtke
Natural genetic variation is crucial for adaptability of plants to different environments. Seed dormancy prevents precocious germination in unsuitable conditions and is an adaptation to a major macro-environmental parameter, the seasonal variation in temperature and day length. Here we report the isolation of IBO, a quantitative trait locus (QTL) that governs c. 30% of germination rate variance in an Arabidopsis recombinant inbred line (RIL) population derived from the parental accessions Eilenburg-0 (Eil-0) and Loch Ness-0 (Lc-0). IBO encodes an uncharacterized phosphatase 2C-related protein, but neither the Eil-0 nor the Lc-0 variant, which differ in a single amino acid, have any appreciable phosphatase activity in in vitro assays. However, we found that the amino acid change in the Lc-0 variant of the IBO protein confers reduced germination rate. Moreover, unlike the Eil-0 variant of the protein, the Lc-0 variant can interfere with the activity of the phosphatase 2C ABSCISIC ACID INSENSITIVE 1 in vitro. This suggests that the Lc-0 variant possibly interferes with abscisic acid signaling, a notion that is supported by physiological assays. Thus, we isolated an example of a QTL allele with a nonsynonymous amino acid change that might mediate local adaptation of seed germination timing.