Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen E. Bartell is active.

Publication


Featured researches published by Stephen E. Bartell.


Aquatic Toxicology | 2011

Selective Uptake and Biological Consequences of Environmentally Relevant Antidepressant Pharmaceutical Exposures on Male Fathead Minnows

Melissa M. Schultz; Meghan M. Painter; Stephen E. Bartell; Amanda Logue; Edward T. Furlong; Stephen L. Werner; Heiko L. Schoenfuss

Antidepressant pharmaceuticals have been reported in wastewater effluent at the nanogram to low microgram-per-liter range, and include bupropion (BUP), fluoxetine (FLX), sertraline (SER), and venlafaxine (VEN). To assess the effects of antidepressants on reproductive anatomy, physiology, and behavior, adult male fathead minnows (Pimephales promelas) were exposed for 21 days either to a single concentration of the antidepressants FLX, SER, VEN, or BUP, or to an antidepressant mixture. The data demonstrated that exposure to VEN (305 ng/L and 1104 ng/L) and SER (5.2 ng/L) resulted in mortality. Anatomical alterations were noted within the testes of fish exposed to SER and FLX, both modulators of the neurotransmitter serotonin. Additionally, FLX at 28 ng/L induced vitellogenin in male fish--a common endpoint for estrogenic endocrine disruption. Significant alterations in male secondary sex characteristics were noted with single exposures. Effects of single compound exposures neither carried over, nor became additive in the antidepressant mixtures, and reproductive behavior was not affected. Analysis of brain tissues from the exposed fish suggested increased uptake of FLX, SER and BUP and minimal uptake of VEN when compared to exposure water concentrations. Furthermore, the only metabolite detected consistently in the brain tissues was norfluoxetine. Similar trends of uptake by brain tissue were observed when fish were exposed to antidepressant mixtures. The present study demonstrates that anatomy and physiology, but not reproductive behavior, can be disrupted by exposure to environmental concentrations of some antidepressants. The observation that antidepressant uptake into fish tissues is selective may have consequences on assessing the mode-of-action and effects of these compounds in future studies.


Aquatic Toxicology | 2010

Comparative biological effects and potency of 17α- and 17β-estradiol in fathead minnows.

N.W. Shappell; K.M. Hyndman; Stephen E. Bartell; Heiko L. Schoenfuss

17β-Estradiol is the most potent natural estrogen commonly found in anthropogenically altered environments and has been the focus of many toxicological laboratory studies. However, fewer aquatic toxicological data on the effects of 17α-estradiol, a diastereoisomer of 17β-estradiol, exists in the literature even though it has been found in the aquatic environment, sometimes at higher concentrations than 17β-estradiol. The central objective of this study was to determine how the anatomical, physiological, and behavioral effects of exposure to 17α-estradiol compare to the well-documented effects of 17β-estradiol exposures in aquatic vertebrates. A 21-day flow-through exposure of mature male and female fathead minnows to three concentrations each of 17α- and 17β-estradiol (averaged measured concentrations 27, 72, and 150 ng/L for 17α-estradiol, and 9, 20, and 44 ng/L for β-estradiol, respectively) yielded significant, concentration-dependent differences in plasma vitellogenin concentrations among estradiol-exposed males when compared to fish from an ethanol carrier control. Interstitial cell prominence in the testis of fish was elevated in all estradiol treatments. Aggressiveness of male fish to defend nest sites appeared depressed in many of the higher concentration estradiol treatments (albeit not significantly). No clear effects were observed in female fish. Based on plasma vitellogenin data, it appears that 17β-estradiol is 8-9 times more potent than 17α-estradiol and that the lowest observable effect concentration (LOEC) for 17α-estradiol in fathead minnows is greater than 25 ng/L and may be less than 75 ng/L.


Aquatic Toxicology | 2011

Comparing biological effects and potencies of estrone and 17β-estradiol in mature fathead minnows, Pimephales promelas

A.A. Dammann; N.W. Shappell; Stephen E. Bartell; Heiko L. Schoenfuss

The presence of endocrine active compounds such as estrogens in treated wastewater effluent and their effects on aquatic life are causing concern among aquatic resource managers. In contrast to 17β-estradiol (E2), the steroid hormone produced by all vertebrates, the biological effects of estrone (E1), one of its breakdown products are less understood, even though the aquatic concentrations of E1 are often higher than those of E2. The central hypothesis of this study was that at environmental concentrations, E1 has estrogenic effects in fish, with increased vitellogenin concentrations and decreased reproductive success in both male and female fathead minnows, as found with E2. In two replicate experiments, we exposed mature fathead minnows to three concentrations of each estrogen for 21 days in a flow-through exposure system and measured a broad suite of anatomical (body indices, histopathology), physiological (plasma vitellogenin), behavioral (nest defense), and reproductive (fecundity, fertility, hatching) endpoints. These endpoints have previously been associated with adverse effects of estrogenic exposures. While body length and weight parameters were unaltered by exposure, secondary sex characteristics exhibited an exposure concentrated-related decline in male fathead minnows. Interestingly, low concentrations of estrone (≈ 15 ng/L) enhanced the aggressiveness of male fathead minnows in a behavioral assay. Vitellogenin concentrations in male fish increased with higher concentrations of both estrogens, but remained unchanged in all female treatments. A decrease in fecundity was observed at high concentrations of E2 as compared with control minnows. These results suggest that E1, at concentrations previously found in waters receiving wastewater effluent, can have reproductive effects on fish.


Science of The Total Environment | 2011

Effects of biologically-active chemical mixtures on fish in a wastewater-impacted urban stream

Larry B. Barber; Gregory K. Brown; Todd G. Nettesheim; Elizabeth W. Murphy; Stephen E. Bartell; Heiko L. Schoenfuss

Stream flow in urban aquatic ecosystems often is maintained by water-reclamation plant (WRP) effluents that contain mixtures of natural and anthropogenic chemicals that persist through the treatment processes. In effluent-impacted streams, aquatic organisms such as fish are continuously exposed to biologically-active chemicals throughout their life cycles. The North Shore Channel of the Chicago River (Chicago, Illinois) is part of an urban ecosystem in which >80% of the annual flow consists of effluent from the North Side WRP. In this study, multiple samplings of the effluent and stream water were conducted and fish (largemouth bass and carp) were collected on 2 occasions from the North Shore Channel. Fish also were collected once from the Outer Chicago Harbor in Lake Michigan, a reference site not impacted by WRP discharges. Over 100 organic chemicals with differing behaviors and biological effects were measured, and 23 compounds were detected in all of the water samples analyzed. The most frequently detected and highest concentration (>100μg/L) compounds were ethylenediaminetetraacetic acid and 4-nonylphenolmono-to-tetraethoxycarboxylic acids. Other biologically-active chemicals including bisphenol A, 4-nonylphenol, 4-nonylphenolmono-to-tetraethoxylates, 4-tert-octylphenol, and 4-tert-octylphenolmono-to-tetraethoxylates were detected at lower concentrations (<5μg/L). The biogenic steroidal hormones 17β-estradiol, estrone, testosterone, 4-androstene-3,17-dione, and cis-androsterone were detected at even lower concentrations (<0.005μg/L). There were slight differences in concentrations between the North Side WRP effluent and the North Shore Channel, indicating minimal in-stream attenuation. Fish populations are continuously exposed to mixtures of biologically-active chemicals because of the relative persistency of the chemicals with respect to stream hydraulic residence time, and the lack of a fresh water source for dilution. The majority of male fish exhibited vitellogenin induction, a physiological response consistent with exposure to estrogenic compounds. Tissue-level signs of reproductive disruption, such as ovatestis, were not observed.


Aquatic Toxicology | 2010

Assessing the effects of exposure timing on biomarker expression using 17β-estradiol

K.M. Hyndman; Adam D. Biales; Stephen E. Bartell; Heiko L. Schoenfuss

Temporal and spatial variability in estrogenicity has been documented for many treated wastewater effluents with the consequences of this variability on the expression of biomarkers of endocrine disruption being largely unknown. Laboratory exposure studies usually utilize constant exposure concentrations which may produce biological effects that differ from those observed in organisms exposed in natural environments. In this study, we investigated the effects of differential timing of exposures with 17beta-estradiol (E2) on a range of fathead minnow biomarkers to simulate diverse environmentally relevant exposure profiles. Two 21-day, replicate experiments were performed exposing mature male fathead minnows to E2 at time-weighted mean concentrations (similar average exposure to the contaminant during the 21-day exposure period; 17ng E2/L experiment 1; 12ng E2/L experiment 2) comparable to E2 equivalency values (EEQ) reported for several anthropogenically altered environments. A comparable time-weighted mean concentration of E2 was applied to five treatments which varied in the daily application schema: E2 was either applied at a steady rate (ST), in a gradual decreasing concentration (HI), a gradual increasing concentration (LO), applied intermittently (IN), or at a randomly varying concentration (VA). We assessed a range of widely used physiological (vitellogenin mRNA induction and plasma concentrations), anatomical (body and organ indices, secondary sex characteristics, and histopathology), and behavioral (nest holding) biomarkers reported to change following exposure to endocrine active compounds (EACs). All treatments responded with a rise in plasma vitellogenin concentration when compared with the ethanol carrier control. Predicatively, vitellogenin mRNA induction, which tracked closely with plasma vitellogenin concentrations in most treatments was not elevated in the HI treatment, presumably due to the lack of E2 exposure immediately prior to analysis. The ability of treatment male fish to hold nest sites in direct competition with control males was sensitive to E2 exposure and did yield statistically significant differences between treatments and carrier control. Other biological endpoints assessed in this study (organosomatic indices, secondary sex characteristics) varied little between treatments and controls. This study indicates that a broad suite of endpoints is necessary to fully assess the biological consequences of fish exposure to estrogens and that for at least field studies, a combination of vitellogenin mRNA and plasma vitellogenin analysis are most promising in deciphering exposure histories of wild-caught and caged fishes.


Environment International | 2013

Environmental estrogens in an urban aquatic ecosystem: II. Biological effects

Melissa M. Schultz; Thomas A. Minarik; Dalma Martinovic-Weigelt; Erin M. Curran; Stephen E. Bartell; Heiko L. Schoenfuss

Urban aquatic ecosystems are often overlooked in toxicological studies even though they serve many ecosystem functions and sustain fish populations despite large-scale habitat alterations. However, urban fish populations are likely exposed to a broad range of stressors, including environmental estrogens (EEs) that may affect anatomy, physiology and reproduction of exposed fish. Although significant progress has been made in establishing ecological consequences of EE exposure, these studies have focused largely on hydrologically simple systems that lack the complexity of urban aquatic environments. Therefore, the objective of this study was to assess the occurrence and biological effects of EEs across a large urbanized aquatic ecosystem. A multi-pronged study design was employed relying on quantitative determination of select EEs by liquid chromatography tandem mass spectrometry and repeated biological monitoring of wild-caught and caged fish for indications of endocrine disruption. Over three years, EEs were measured in aqueous samples (n=42 samples) and biological effects assessed in >1200 male fish across the 2000km(2) aquatic ecosystems of the Greater Metropolitan Area of Chicago, IL. Our study demonstrated that in addition to water reclamation plant (WRP) effluents, non-WRP sources contribute significant EE loads to the aquatic ecosystem. While resident and caged male fish responded with the induction of the egg-yolk protein vitellogenin, an indicator of EE exposure, neither resident nor caged sunfish exhibited prevalent histopathological changes to their reproductive organs (i.e., intersex) that have been reported in other studies. Vitellogenin induction was greater in spring than the fall and was not correlated with body condition factor, gonadosomatic index or hepatosomatic index. Exposure effects were not correlated with sites downstream of treated effluent discharge further affirming the complexity of sources and effects of EEs in urban aquatic ecosystems.


Archives of Environmental Contamination and Toxicology | 2012

Assessing the Effects of Historical Exposure to Endocrine-Active Compounds on Reproductive Health and Genetic Diversity in Walleye, a Native Apex Predator, in a Large Riverine System

Loren M. Miller; Stephen E. Bartell; Heiko L. Schoenfuss

In this combined field and laboratory study, we assessed whether populations of native walleye in the Upper Mississippi River experienced altered genetic diversity correlated with exposure to estrogenic endocrine-active compounds (EACs). We collected fin-clips for genetic analysis from almost 600 walleye (13 sites) and subsampled 377 of these fish (6 sites) for blood and reproductive organs. Finally, we caged male fathead minnows at 5 sampling sites to confirm the presence of estrogenic EACs. Our findings indicate that male walleye in four river segments produced measurable concentrations of plasma vitellogenin (an egg-yolk protein and, when expressed in male fish, a biomarker of acute estrogenic exposure), a finding consistent with the presence of estrogenic EACs and consistent with published historical data for at least three of these study sites (Grand Rapids, St. Paul, and Lake City on Lake Pepin). Patterns of vitellogenin induction were consistent for native walleye and caged fathead minnows. No widespread occurrence of histopathological changes, such as intersex was found compared with published reports of intersex at the furthest downstream study site. To assess possible effects of estrogenic exposure on the genetic diversity of walleye populations at the study sites, we DNA-fingerprinted individual fish using 10 microsatellite loci. Genetic differences were observed between populations; however, these differences were consistent with geographic distance between populations, with the largest observed difference in genetic diversity found between fish upstream and downstream of St. Anthony Falls (and/or Lock and Dam 1 of the Mississippi River), traditionally a historical barrier to upstream fish movement. Although the persistent occurrence of endocrine disruption in wild fish populations is troubling, we did not detect degradation of reproductive organs in individual walleye or alteration in genetic diversity of walleye populations.


International Scholarly Research Notices | 2012

Affinity and Matrix Effects in Measuring Fish Plasma Vitellogenin Using Immunosorbent Assays: Considerations for Aquatic Toxicologists

Stephen E. Bartell; Heiko L. Schoenfuss

Enzyme-linked immunosorbent assays (ELISAs) are important tools in aquatic toxicology and have become crucial in assessing exposure concentrations in the aquatic environment and acute physiological responses in exposed organisms. These assays utilize the inherent properties of antibodies to recognize and selectively bind a target molecule, while largely ignoring other molecules to provide semiquantitative values. A variety of methodologies to measure plasma vitellogenin using ELISAs have generated widely divergent data. Limitations of the ELISA method are known in the wider immunology field, though aquatic toxicologists may be less familiar with these limitations. We evaluated several mechanisms contributing to the divergent vitellogenin data in the literature. Antibody affinities and the matrix in which standard curves are constructed are possible error generators. These errors can be amplified by large sample dilutions necessary to fall within the standard curve. It is important for the aquatic toxicology research community to realize the limitations and understand the pitfalls of absolute plasma vitellogenin data in their studies.


Science of The Total Environment | 2018

Do environmental factors affect male fathead minnow (Pimephales promelas) response to estrone? Part 2. Temperature and food availability.

Nancy W. Shappell; D.J. Feifarek; Daniel C. Rearick; Stephen E. Bartell; Heiko L. Schoenfuss

Fish are subject to constantly changing environmental conditions and food availability, factors that may impact their response to endocrine disruptors (EDs). This may, in part, explain outcome discrepancies between field studies and laboratory exposures to EDs. This study assessed whether standard laboratory conditions for fish exposures adequately represent effects of ED exposure at two environmentally realistic temperatures. The impact of temperature and food availability on male fathead minnow response to estrone (E1) exposure was studied in two experiments (3×2×2 factorial design) with three E1 concentrations (range 0-135ng/L); two temperatures (18°C and 26°C, the latter the prescribed laboratory temperature), and two feeding treatments (full fed vs. 25% of full fed) in a 21-day flow-through system. Morphometric endpoints [including body condition factor, somatic index of gonad (GSI) and liver (HSI), and secondary sex characteristics (SSC)], blood parameters [hematocrit (HCT), blood glucose, cortisol, and vitellogenin (VTG) concentrations], and histology of liver and testis were determined on day 22. High E1 consistently increased VTG, though interactions among E1, temperature and/or food on liver weight, HSI, and HCT were inconsistent between experiments. High temperature impacted the greatest number of parameters, independent of E1 treatment. Three sex-linked parameters were lower at high temperature (testis weight, GSI and VTG), and in Exp. 2SSC and gonad maturity rating were lower. At 26°C, in Exp. 1 HSI and HCT decreased, and in Exp. 2 length, body and liver weight, and body condition factor were lower. Food restriction decreased GSI in Exp. 1, and blood glucose and liver weight in Exp. 2. At 26°C several parameters were altered independent of E1 exposure, including three out of four measurements of sperm differentiation. Concordance between laboratory and field investigations of the biological effects of EDs may improve if environmentally-relevant exposure conditions, especially temperature, are employed.


Aquatic Toxicology | 2008

Impairment of the reproductive potential of male fathead minnows by environmentally relevant exposures to 4-nonylphenolf

Heiko L. Schoenfuss; Stephen E. Bartell; T.B. Bistodeau; Roberto A. Cediel; K.J. Grove; Larry Zintek; Kathy E. Lee; Larry B. Barber

Collaboration


Dive into the Stephen E. Bartell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Larry B. Barber

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Daniel C. Rearick

St. Cloud State University

View shared research outputs
Top Co-Authors

Avatar

K.M. Hyndman

St. Cloud State University

View shared research outputs
Top Co-Authors

Avatar

Kathy E. Lee

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

N.W. Shappell

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Roberto A. Cediel

St. Cloud State University

View shared research outputs
Top Co-Authors

Avatar

A.A. Dammann

St. Cloud State University

View shared research outputs
Top Co-Authors

Avatar

Adam D. Biales

United States Environmental Protection Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge