Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen F. Carter is active.

Publication


Featured researches published by Stephen F. Carter.


British Journal of Radiology | 2007

Positron emission tomography imaging in dementia

Karl Herholz; Stephen F. Carter; Matthew Jones

Positron emission tomography (PET) is a well-established imaging modality. Measurement of regional cerebral glucose metabolism (rCMR(glc)) using PET and [(18)F]-2-fluoro-2-deoxy-D-glucose (FDG) has become a standard technique in both oncology and dementia research. When measuring rCMR(glc) in Alzheimers disease (AD), characteristic reductions in rCMR(glc) are found in neocortical association areas including the posterior cingulate, precuneus, temporoparietal and frontal multimodal association regions; the primary visual cortex, sensorimotor cortex, basal ganglia and cerebellum are relatively unaffected. FDG-PET has been used in the study of mild cognitive impairment (MCI) to accurately predict the subsequent decline to AD. Impairment in rCMR(glc) may be seen in individuals at high genetic risk of AD, even before clinical symptoms are apparent. Characteristic patterns of regional hypometabolism are also seen in other degenerative dementias such as frontotemporal dementia (FTD) and dementia with Lewy bodies (DLB). The use of different radioisotopes and tracers increases the versatility of PET. Tracers adopted in dementia research include (11)C-PK-11195 and (11)C-PIB, which have been used to investigate neuroinflammation and amyloid deposition, respectively, in both AD and MCI populations. It is also possible to investigate neurotransmitter systems in dementia; targets have included the cholinergic, dopaminergic and serotonergic systems. Imaging the brains of dementia patients using PET provides important information about the brain function of these individuals that would otherwise be unavailable with other imaging modalities. PET will continue to be important in future dementia research as new tracers become available to help in the early and specific diagnosis of increasingly well-defined clinical syndromes, and assist in the assessment of new therapeutic interventions.


The Journal of Nuclear Medicine | 2012

Evidence for Astrocytosis in Prodromal Alzheimer Disease Provided by 11C-Deuterium-L-Deprenyl: A Multitracer PET Paradigm Combining 11C-Pittsburgh Compound B and 18F-FDG

Stephen F. Carter; Michael Schöll; Ove Almkvist; Anders Wall; Henry Engler; Bengt Långström; Agneta Nordberg

Astrocytes colocalize with fibrillar amyloid-β (Aβ) plaques in postmortem Alzheimer disease (AD) brain tissue. It is therefore of great interest to develop a PET tracer for visualizing astrocytes in vivo, enabling the study of the regional distribution of both astrocytes and fibrillar Aβ. A multitracer PET investigation was conducted for patients with mild cognitive impairment (MCI), patients with mild AD, and healthy controls using 11C-deuterium-L-deprenyl (11C-DED) to measure monoamine oxidase B located in astrocytes. Along with 11C-DED PET, 11C-Pittsburgh compound B (11C-PIB; fibrillar Aβ deposition), 18F-FDG (glucose metabolism), T1 MRI, cerebrospinal fluid, and neuropsychologic data were acquired from the patients. Methods: 11C-DED PET was performed in MCI patients (n = 8; mean age ± SD, 62.6 ± 7.5 y; mean Mini Mental State Examination, 27.5 ± 2.1), AD patients (n = 7; mean age, 65.1 ± 6.3 y; mean Mini Mental State Examination, 24.4 ± 5.7), and healthy age-matched controls (n = 14; mean age, 64.7 ± 3.6 y). A modified reference Patlak model, with cerebellar gray matter as a reference, was chosen for kinetic analysis of the 11C-DED data. 11C-DED data from 20 to 60 min were analyzed using a digital brain atlas. Mean regional 18F-FDG uptake and 11C-PIB retention were calculated for each patient, with cerebellar gray matter as a reference. Results: ANOVA analysis of the regional 11C-DED binding data revealed a significant group effect in the bilateral frontal and bilateral parietal cortices related to increased binding in the MCI patients. All patients, except 3 with MCI, showed high 11C-PIB retention. Increased 11C-DED binding in most cortical and subcortical regions was observed in MCI 11C-PIB+ patients relative to controls, MCI 11C-PIB (negative) patients, and AD patients. No regional correlations were found between the 3 PET tracers. Conclusion: Increased 11C-DED binding throughout the brain of the MCI 11C-PIB+ patients potentially suggests that astrocytosis is an early phenomenon in AD development.


Neurology | 2013

Prediction of dementia in MCI patients based on core diagnostic markers for Alzheimer disease

Annapaola Prestia; Anna Caroli; Wiesje M. van der Flier; Rik Ossenkoppele; Bart N.M. van Berckel; Frederik Barkhof; Charlotte E. Teunissen; Anders Wall; Stephen F. Carter; Michael Schöll; Il Han Choo; Agneta Nordberg; Philip Scheltens; Giovanni B. Frisoni

Objectives: The current model of Alzheimer disease (AD) stipulates that brain amyloidosis biomarkers turn abnormal earliest, followed by cortical hypometabolism, and finally brain atrophy ones. The aim of this study is to provide clinical evidence of the model in patients with mild cognitive impairment (MCI). Methods: A total of 73 patients with MCI from 3 European memory clinics were included. Brain amyloidosis was assessed by CSF Aβ42 concentration, cortical metabolism by an index of temporoparietal hypometabolism on FDG-PET, and brain atrophy by automated hippocampal volume. Patients were divided into groups based on biomarker positivity: 1) Aβ42− FDG-PET− Hippo−, 2) Aβ42+ FDG-PET− Hippo−, 3) Aβ42 + FDG-PET + Hippo−, 4) Aβ42 + FDG-PET+ Hippo+, and 5) any other combination not in line with the model. Measures of validity were prevalence of group 5, increasing incidence of progression to dementia with increasing biological severity, and decreasing conversion time. Results: When patients with MCI underwent clinical follow-up, 29 progressed to dementia, while 44 remained stable. A total of 26% of patients were in group 5. Incident dementia was increasing with greater biological severity in groups 1 to 5 from 4% to 27%, 64%, and 100% (p for trend < 0.0001), and occurred increasingly earlier (p for trend = 0.024). Conclusions: The core biomarker pattern is in line with the current pathophysiologic model of AD. Fully normal and fully abnormal pattern is associated with exceptional and universal development of dementia. Cases not in line might be due to atypical neurobiology or inaccurate thresholds for biomarker (ab)normality.


Neurology | 2015

Mild cognitive impairment with suspected nonamyloid pathology (SNAP) Prediction of progression

Anna Caroli; Annapaola Prestia; Samantha Galluzzi; Clarissa Ferrari; Wiesje M. van der Flier; Rik Ossenkoppele; Bart N.M. van Berckel; Frederik Barkhof; Charlotte Teunissen; Anders Wall; Stephen F. Carter; Michael Schöll; Il Han Choo; Timo Grimmer; Alberto Redolfi; Agneta Nordberg; Philip Scheltens; Alexander Drzezga; Giovanni B. Frisoni

Objectives: The aim of this study was to investigate predictors of progressive cognitive deterioration in patients with suspected non–Alzheimer disease pathology (SNAP) and mild cognitive impairment (MCI). Methods: We measured markers of amyloid pathology (CSF β-amyloid 42) and neurodegeneration (hippocampal volume on MRI and cortical metabolism on [18F]-fluorodeoxyglucose–PET) in 201 patients with MCI clinically followed for up to 6 years to detect progressive cognitive deterioration. We categorized patients with MCI as A+/A− and N+/N− based on presence/absence of amyloid pathology and neurodegeneration. SNAPs were A−N+ cases. Results: The proportion of progressors was 11% (8/41), 34% (14/41), 56% (19/34), and 71% (60/85) in A−N−, A+N−, SNAP, and A+N+, respectively; the proportion of APOE ε4 carriers was 29%, 70%, 31%, and 71%, respectively, with the SNAP group featuring a significantly different proportion than both A+N− and A+N+ groups (p ≤ 0.005). Hypometabolism in SNAP patients was comparable to A+N+ patients (p = 0.154), while hippocampal atrophy was more severe in SNAP patients (p = 0.002). Compared with A−N−, SNAP and A+N+ patients had significant risk of progressive cognitive deterioration (hazard ratio = 2.7 and 3.8, p = 0.016 and p < 0.001), while A+N− patients did not (hazard ratio = 1.13, p = 0.771). In A+N− and A+N+ groups, none of the biomarkers predicted time to progression. In the SNAP group, lower time to progression was correlated with greater hypometabolism (r = 0.42, p = 0.073). Conclusions: Our findings support the notion that patients with SNAP MCI feature a specific risk progression profile.


Brain | 2016

Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer's disease.

E. Rodriguez-Vieitez; Laure Saint-Aubert; Stephen F. Carter; Ove Almkvist; Karim Farid; Michael Schöll; Konstantinos Chiotis; Steinunn Thordardottir; Caroline Graff; Anders Wall; Bengt Långström; Agneta Nordberg

See Schott and Fox (doi: 10.1093/brain/awv405 ) for a scientific commentary on this article. The relationships between pathophysiological processes in Alzheimer’s disease remain largely unclear. In a longitudinal, multitracer PET study, Rodriguez-Vieitez et al. reveal that progression of autosomal dominant Alzheimer’s disease is accompanied by prominent early and then declining astrocytosis, increasing amyloid plaque deposition and decreasing glucose metabolism. Astrocyte activation may initiate Alzheimer pathology.


International Journal of Geriatric Psychiatry | 2011

Staging of the cognitive decline in Alzheimer's disease: insights from a detailed neuropsychological investigation of mild cognitive impairment and mild Alzheimer's disease

Stephen F. Carter; Diana Caine; Alistair Burns; Karl Herholz; Matthew A. Lambon Ralph

The decline of episodic memory in Alzheimers disease (AD) is well established, but the exact appearance and staging of deficits in other cognitive domains is sometimes contentious. The current investigation attempted to elucidate the appearance of additional cognitive deficits in the non‐episodic domains and to understand these deficits with respect to the known pathological staging of AD.


Alzheimers & Dementia | 2015

Prediction of AD dementia by biomarkers following the NIA-AA and IWG diagnostic criteria in MCI patients from three European memory clinics.

Annapaola Prestia; Anna Caroli; Sara Wade; Wiesjie M. van der Flier; Rik Ossenkoppele; Bart N.M. van Berckel; Frederik Barkhof; Charlotte E. Teunissen; Anders Wall; Stephen F. Carter; Michael Schöll; Il Han Choo; Agneta Nordberg; Philip Scheltens; Giovanni B. Frisoni

Proposed diagnostic criteria (international working group and National Institute on Aging and Alzheimers Association) for Alzheimers disease (AD) include markers of amyloidosis (abnormal cerebrospinal fluid [CSF] amyloid beta [Aβ]42) and neurodegeneration (hippocampal atrophy, temporo‐parietal hypometabolism on [18F]‐fluorodeoxyglucose‐positron emission tomography (FDG‐PET), and abnormal CSF tau). We aim to compare the accuracy of these biomarkers, individually and in combination, in predicting AD among mild cognitive impairment (MCI) patients.


Scientific Reports | 2015

Early astrocytosis in autosomal dominant Alzheimer's disease measured in vivo by multi-tracer positron emission tomography

Michael Schöll; Stephen F. Carter; Eric Westman; E. Rodriguez-Vieitez; Ove Almkvist; Steinunn Thordardottir; Anders Wall; Caroline Graff; Bengt Långström; Agneta Nordberg

Studying autosomal dominant Alzheimer’s disease (ADAD), caused by gene mutations yielding nearly complete penetrance and a distinct age of symptom onset, allows investigation of presymptomatic pathological processes that can identify a therapeutic window for disease-modifying therapies. Astrocyte activation may occur in presymptomatic Alzheimer’s disease (AD) because reactive astrocytes surround β-amyloid (Aβ) plaques in autopsy brain tissue. Positron emission tomography was performed to investigate fibrillar Aβ, astrocytosis and cerebral glucose metabolism with the radiotracers 11C-Pittsburgh compound-B (PIB), 11C-deuterium-L-deprenyl (DED) and 18F-fluorodeoxyglucose (FDG) respectively in presymptomatic and symptomatic ADAD participants (n = 21), patients with mild cognitive impairment (n = 11) and sporadic AD (n = 7). Multivariate analysis using the combined data from all radiotracers clearly separated the different groups along the first and second principal components according to increased PIB retention/decreased FDG uptake (component 1) and increased DED binding (component 2). Presymptomatic ADAD mutation carriers showed significantly higher PIB retention than non-carriers in all brain regions except the hippocampus. DED binding was highest in presymptomatic ADAD mutation carriers. This suggests that non-fibrillar Aβ or early stage plaque depostion might interact with inflammatory responses indicating astrocytosis as an early contributory driving force in AD pathology. The novelty of this finding will be investigated in longitudinal follow-up studies.


European Journal of Nuclear Medicine and Molecular Imaging | 2014

Astrocytosis measured by 11C-deprenyl PET correlates with decrease in gray matter density in the parahippocampus of prodromal Alzheimer's patients.

Il Han Choo; Stephen F. Carter; Michael Schöll; Agneta Nordberg

PurposeThe Alzheimer’s disease (AD) pathology is characterized by fibrillar amyloid deposits and neurofibrillary tangles, as well as the activation of astrocytosis, microglia activation, atrophy, dysfunctional synapse, and cognitive impairments. The aim of this study was to test the hypothesis that astrocytosis is correlated with reduced gray matter density in prodromal AD.MethodsTwenty patients with AD or mild cognitive impairment (MCI) underwent multi-tracer positron emission tomography (PET) studies with 11C-Pittsburgh compound B (11C-PIB), 18 F-Fluorodeoxyglucose (18 F-FDG), and 11C-deuterium-L-deprenyl (11C-DED) PET imaging, as well as magnetic resonance imaging (MRI) scanning, cerebrospinal fluid (CSF) biomarker analysis, and neuropsychological assessments. The parahippocampus was selected as a region of interest, and each value was calculated for four different imaging modalities. Correlation analysis was applied between DED slope values and gray matter (GM) densities by MRI. To further explore possible relationships, correlation analyses were performed between the different variables, including the CSF biomarker.ResultsA significant negative correlation was obtained between DED slope values and GM density in the parahippocampus in PIB-positive (PIB + ve) MCI patients (p = 0.025) (prodromal AD). Furthermore, in exploratory analyses, a positive correlation was observed between PIB-PET retention and DED binding in AD patients (p = 0.014), and a negative correlation was observed between PIB retention and CSF Aβ42 levels in MCI patients (p = 0.021), while the GM density and CSF total tau levels were negatively correlated in both PIB + ve MCI (p = 0.002) and MCI patients (p = 0.001). No significant correlation was observed with FDG-PET and with any of the other PET, MRI, or CSF biomarkers.ConclusionsHigh astrocytosis levels in the parahippocampus of PIB + ve MCI (prodromal AD) patients suggest an early preclinical influence on cellular tissue loss. The lack of correlation between astrocytosis and CSF tau levels, and a positive correlation between astrocytosis and fibrillar amyloid deposition in clinical demented AD together indicate that parahippocampal astrocytosis might have some causality within the amyloid pathology.


Neurology | 2016

Use of amyloid-PET to determine cutpoints for CSF markers: A multicenter study.

Marissa D. Zwan; Juha O. Rinne; Steen G. Hasselbalch; Agneta Nordberg; Alberto Lleó; Sanna-Kaisa Herukka; Hilkka Soininen; Ian Law; Justyna M.C. Bahl; Stephen F. Carter; Juan Fortea; Rafael Blesa; Charlotte E. Teunissen; Femke H. Bouwman; Bart N.M. van Berckel; Pieter J. Visser

Objectives: To define CSF β-amyloid 1–42 (Aβ42) cutpoints to detect cortical amyloid deposition as assessed by 11C-Pittsburgh compound B ([11C]PiB)-PET and to compare these calculated cutpoints with cutpoints currently used in clinical practice. Methods: We included 433 participants (57 controls, 99 with mild cognitive impairment, 195 with Alzheimer disease [AD] dementia, and 82 with non-AD dementia) from 5 European centers. We calculated for each center and for the pooled cohort CSF Aβ42 and Aβ42/tau ratio cutpoints for cortical amyloid deposition based on visual interpretation of [11C]PiB-PET images. Results: Amyloid-PET–based calculated CSF Aβ42 cutpoints ranged from 521 to 616 pg/mL, whereas existing clinical-based cutpoints ranged from 400 to 550 pg/mL. Using the calculated cutpoint from the pooled sample (557 pg/mL), concordance between CSF Aβ42 and amyloid-PET was 84%. Similar concordance was found when using a dichotomized Aβ42/tau ratio. Exploratory analysis showed that participants with a positive amyloid-PET and normal CSF Aβ42 levels had higher CSF tau and phosphorylated tau levels and more often had mild cognitive impairment or AD dementia compared with participants who had negative amyloid-PET and abnormal CSF Aβ42 levels. Conclusions: Amyloid-PET–based CSF Aβ42 cutpoints were higher and tended to reduce intercenter variability compared with clinical-based cutpoints. Discordant participants with normal CSF Aβ42 and a positive amyloid-PET may be more likely to have AD-related amyloid pathology than participants with abnormal CSF Aβ42 and a negative amyloid-PET. Classification of evidence: This study provides Class II evidence that an amyloid-PET–based CSF Aβ42 cutpoint identifies individuals with amyloid deposition with a sensitivity of 87% and specificity of 80%.

Collaboration


Dive into the Stephen F. Carter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karl Herholz

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip Scheltens

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rainer Hinz

University of Manchester

View shared research outputs
Researchain Logo
Decentralizing Knowledge