Stephen G. Rudisill
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephen G. Rudisill.
Journal of Solar Energy Engineering-transactions of The Asme | 2012
Luke J. Venstrom; Nicholas D. Petkovich; Stephen G. Rudisill; Andreas Stein; Jane H. Davidson
The oxidation of three-dimensionally ordered macroporous (3DOM) CeO2 (ceria) by H2 O and CO2 at 1100 K is presented in comparison to the oxidation of nonordered mesoporous and sintered, low porosity ceria. 3DOM ceria, which features interconnected and ordered pores, increases the maximum H2 and CO production rates over the low porosity ceria by 125% and 260%, respectively, and increases the maximum H2 and CO production rates over the nonordered mesoporous cerium oxide by 75% and 175%, respectively. The increase in the kinetics of H2 O and CO2 splitting with 3DOM ceria is attributed to its enhanced specific surface area and to its interconnected pore system that facilitates the transport of reacting species to and from oxidation sites.
Inorganic Chemistry | 2014
Nicholas D. Petkovich; Stephen G. Rudisill; Benjamin E. Wilson; Anwesha Mukherjee; Andreas Stein
After several high-profile incidents that raised concerns about the hazards posed by lithium ion batteries, research has accelerated in the development of safer electrodes and electrolytes. One anode material, titanium dioxide (TiO2), offers a distinct safety advantage in comparison to commercialized graphite anodes, since TiO2 has a higher potential for lithium intercalation. In this article, we present two routes for the facile, robust synthesis of nanostructured TiO2/carbon composites for use as lithium ion battery anodes. These materials are made using a combination of colloidal crystal templating and surfactant templating, leading to the first report of a three-dimensionally ordered macroporous TiO2/C composite with mesoporous walls. Control over the size and location of the TiO2 crystallites in the composite (an often difficult task) has been achieved by changing the chelating agent in the precursor. Adjustment of the pyrolysis temperature has also allowed us to strike a balance between the size of the TiO2 crystallites and the degree of carbonization. Using these pathways to optimize electrochemical performance, the primarily macroporous TiO2/C composites can attain a capacity of 171 mAh/g at a rate of 1 C. Additionally, the carbon in these composites can function as a secondary template for high-surface-area, macroporous TiO2 with disordered mesoporous voids. Combining the advantages of a nanocrystalline framework and significant open porosity, the macroporous TiO2 delivers a stable capacity (>170 mAh/g at a rate of C/2) over 100 cycles.
Langmuir | 2012
Stephen G. Rudisill; Zhiyong Wang; Andreas Stein
Nanoporous and nanostructured materials are becoming increasingly important for advanced applications involving, for example, bioactive materials, catalytic materials, energy storage and conversion materials, photonic crystals, membranes, and more. As such, they are exposed to a variety of harsh environments and often experience detrimental morphological changes as a result. This article highlights material limitations and recent advances in porous materials--three-dimensionally ordered macroporous (3DOM) materials in particular--under reactive or high-temperature conditions. Examples include systems where morphological changes are desired and systems that require an increased retention of structure, surface area, and overall material integrity during synthesis and processing. Structural modifications, changes in composition, and alternate synthesis routes are explored and discussed. Improvements in thermal or structural stability have been achieved by the isolation of nanoparticles in porous structures through spatial separation, by confinement in a more thermally stable host, by the application of a protective surface or an adhesive interlayer, by alloy or solid solution formation, and by doping to induce solute drag.
ACS Applied Materials & Interfaces | 2014
Nicholas D. Petkovich; Benjamin E. Wilson; Stephen G. Rudisill; Andreas Stein
As lithium-ion batteries (LIB) see increasing use in areas beyond consumer electronics, such as the transportation sector, research has been directed at improving LIBs to better suit these applications. Of particular interest are materials and methods to increase Li(+) capacity at various charge/discharge rates, to improve retention of Li(+) capacity from cycle-to-cycle, and to enhance various safety aspects of electrode synthesis, cell construction, and end use. This work focuses on the synthesis and testing of three-dimensionally ordered macroporous (3DOM) TiO2/C LIB anode materials prepared using low toxicity precursors, including ammonium citratoperoxotitanate(IV) and sucrose, which provide high capacities for reversible Li(+) insertion/extraction. When the composites are pyrolyzed at 700 °C, the carbon phase restricts sintering of TiO2 crystallites and keeps the size of these crystallites below 5 nm. Slightly larger crystallites are produced at higher temperatures, alongside a titanium oxycarbide phase. The composites exhibit excellent capacities as LIB anodes at low to moderate charge/discharge rates (in the window from 1 to 3 V vs Li/Li(+)). Composites pyrolyzed at 700 °C retain over 200 mAh/g TiO2 of capacity after 100 cycles at a C/2 rate (C = 335 mA/g), and do not suffer from extensive cycle-to-cycle capacity fading. A substantial improvement of overall capacities, especially at high rates, is attained by cycling the composite anodes in a wider voltage window (0.05 to 3 V vs Li/Li(+)), which allows for Li(+) intercalation into carbon. At currents of 1500 mA/g of active material, over 200 mAh/g of capacity is retained. Other structural aspects of the composites are discussed, including how rutile TiO2 is found in these composites at sizes below the thermodynamic stability limit in the pure phase.
Inorganic Chemistry | 2015
Stephen G. Rudisill; Sammy Shaker; Denis Terzic; Réginald Le Maire; Bao Lian Su; Andreas Stein
When three-dimensionally ordered macroporous (3DOM) materials are synthesized in polymeric colloidal crystal templates using a Pechini-type approach, polymerization-induced phase separation (PIPS) can occur. Depending on the reaction conditions, the porous products have a variety of morphologies, including an extended inverse opal structure, bicontinuous networks of 3DOM materials interrupted by extended voids, uniform 3DOM microspheres, sheet structures of templated macroporous oxides, and hollow particles obtained by structural disassembly. In this study, the mechanism underpinning morphology control of 3DOM metal oxides through PIPS is elucidated for Ce(0.5)Mg(0.5)O(1.5) and CeO(2) systems. The mechanistic information is then applied to synthesize target morphologies for Mn(3)O(4) and Fe(2)O(3)/Fe(3)O(4) systems, demonstrating the more general nature of the synthetic approach for aqueous metal precursors that can be complexed with citric acid. The effects of reactant balance, complexation behavior, processing temperature, and template sphere size are related directly to the microstructures obtained. The predominant controlling factor of microstructural evolution in PIPS Pechini precursors is found to be the degree of polymerization of the polyester, which can be controlled through tailoring the reagent imbalance. 3DOM microspheres produced by the method are between 0.5 and 3 μm in size, with polydispersities below 25%.
Acta Biomaterialia | 2015
Stephen G. Rudisill; Michael D. DiVito; Allison Hubel; Andreas Stein
This study demonstrates a method for producing ordered collagen fibrils on a similar length scale to those in the cornea, using a one-pot liquid-phase synthesis. The alignment persists throughout samples on the mm scale. The addition of nanocrystalline cellulose (NCC), a biocompatible and widely available material, to collagen prior to gelation causes the fibrils to align and achieve a narrow size distribution (36±8nm). The effects of NCC loading in the composites on microstructure, transparency and biocompatibility are studied by scanning electron microscopy, ultraviolet-visible spectroscopy and cell growth experiments. A 2% loading of NCC increases the transparency of collagen while producing an ordered microstructure. A mechanism is proposed for the ordering behavior on the basis of enhanced hydrogen bonding during collagen gel formation.
Investigative Ophthalmology & Visual Science | 2012
Michael D. DiVito; Stephen G. Rudisill; Andreas Stein; Sanjay V. Patel; Jay W. McLaren; Allison Hubel
PURPOSE To investigate compositions of silica-collagen hybrid materials as potential artificial corneal substitutes, how these components affect the optical and biomechanical properties of the hybrids, and their biocompatibility in an organ culture model. METHODS Hybrid materials were created from different proportions of collagen and silica precursors and manufactured to specific dimensions. The microstructure of the materials was determined by electron microscopy and mechanical strength was measured by using suture pullout tests. The refractive index and transmittance were measured by using an Abbe refractometer and a spectrophotometer. Materials were implanted into rabbit corneas to determine their epithelialization in organ culture. RESULTS Scanning electron microscopy demonstrated that the hybrid material consisted of silica-encapsulating collagen fibrils. The refractive index ranged from 1.332 to 1.403 depending upon the composition and manufacturing characteristics. The rupture strength of a 3:1 (silica:collagen ratio by weight) rehydrated xerogel was 0.161 ± 0.073 N/mm (n = 12), while the hydrogels and 9:1 xerogel were too fragile for suturing. Re-epithelialization of 5- to 6-mm-wide rabbit corneal epithelial defects was complete in 5.5 ± 2.4 days (n = 6), with evidence of epithelial stratification. CONCLUSIONS Silica-collagen hybrid materials can be manufactured to specific dimensions to serve as a possible artificial corneal substitute. In preliminary studies, the materials had favorable optical, biomechanical, and biocompatibility properties necessary for replacing the corneal stroma.
ASME 2011 5th International Conference on Energy Sustainability, Parts A, B, and C | 2011
Luke J. Venstrom; Nicholas D. Petkovich; Stephen G. Rudisill; Andreas Stein; Jane H. Davidson
The H2 and CO productivity and reactivity of three-dimensionally ordered macroporous (3DOM) cerium and cerium-zirconium oxide upon H2 O and CO2 oxidation at 1073K is presented in comparison to the productivity and reactivity of non-ordered porous and low porosity cerium oxide. The production of H2 and CO2 constitutes the second step of the two-step solar thermochemical H2 O and CO2 splitting cycles. The 3DOM cerium oxide, with a specific surface area of 25 m2 g−1 , increases the average H2 and CO production rates over the non-ordered porous cerium oxide with a specific surface area of 112 m2 g−1 : the average H2 production rate increases from 5.2 cm3 g−1 min−1 to 7.9 cm3 g−1 min−1 and the average CO production rate increases from 7.7 cm3 g−1 min−1 to 21.9 cm3 g−1 min−1 . The superior reactivity of 3DOM cerium oxide is attributed primarily to the stability of the 3DOM structure and also to the improved transport of reacting species to and from oxidation sites realized with the interconnected and ordered pores of the 3DOM structure. Doping the 3DOM cerium oxide with 20 mol% zirconia further stabilizes the structure and increases the average H2 and CO production rates to 10.2 cm3 g−1 min−1 and 22.1 cm3 g−1 min−1 , respectively.Copyright
Chemical Society Reviews | 2013
Andreas Stein; Benjamin E. Wilson; Stephen G. Rudisill
Journal of Physical Chemistry C | 2011
Nicholas D. Petkovich; Stephen G. Rudisill; Luke J. Venstrom; Daniel B. Boman; Jane H. Davidson; Andreas Stein