Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen Higgs is active.

Publication


Featured researches published by Stephen Higgs.


PLOS Pathogens | 2007

A single mutation in chikungunya virus affects vector specificity and epidemic potential.

Konstantin A. Tsetsarkin; Dana L. Vanlandingham; Charles E. McGee; Stephen Higgs

Chikungunya virus (CHIKV) is an emerging arbovirus associated with several recent large-scale epidemics. The 2005–2006 epidemic on Reunion island that resulted in approximately 266,000 human cases was associated with a strain of CHIKV with a mutation in the envelope protein gene (E1-A226V). To test the hypothesis that this mutation in the epidemic CHIKV (strain LR2006 OPY1) might influence fitness for different vector species, viral infectivity, dissemination, and transmission of CHIKV were compared in Aedes albopictus, the species implicated in the epidemic, and the recognized vector Ae. aegypti. Using viral infectious clones of the Reunion strain and a West African strain of CHIKV, into which either the E1–226 A or V mutation was engineered, we demonstrated that the E1-A226V mutation was directly responsible for a significant increase in CHIKV infectivity for Ae. albopictus, and led to more efficient viral dissemination into mosquito secondary organs and transmission to suckling mice. This mutation caused a marginal decrease in CHIKV Ae. aegypti midgut infectivity, had no effect on viral dissemination, and was associated with a slight increase in transmission by Ae. aegypti to suckling mice in competition experiments. The effect of the E1-A226V mutation on cholesterol dependence of CHIKV was also analyzed, revealing an association between cholesterol dependence and increased fitness of CHIKV in Ae. albopictus. Our observation that a single amino acid substitution can influence vector specificity provides a plausible explanation of how this mutant virus caused an epidemic in a region lacking the typical vector. This has important implications with respect to how viruses may establish a transmission cycle when introduced into a new area. Due to the widespread distribution of Ae. albopictus, this mutation increases the potential for CHIKV to permanently extend its range into Europe and the Americas.


Science | 2010

Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics.

Peter Arensburger; Karine Megy; Robert M. Waterhouse; Jenica Abrudan; Paolo Amedeo; Beatriz García Antelo; Lyric C. Bartholomay; Shelby Bidwell; Elisabet Caler; Francisco Camara; Corey L. Campbell; Kathryn S. Campbell; Claudio Casola; Marta T. Castro; Ishwar Chandramouliswaran; Sinéad B. Chapman; Scott Christley; Javier Costas; Eric Eisenstadt; Cédric Feschotte; Claire M. Fraser-Liggett; Roderic Guigó; Brian J. Haas; Martin Hammond; Bill S. Hansson; Janet Hemingway; Sharon R. Hill; Clint Howarth; Rickard Ignell; Ryan C. Kennedy

Closing the Vector Circle The genome sequence of Culex quinquefasciatus offers a representative of the third major genus of mosquito disease vectors for comparative analysis. In a major international effort, Arensburger et al. (p. 86) uncovered divergences in the C. quinquefasciatus genome compared with the representatives of the other two genera Aedes aegypti and Anopheles gambiae. The main difference noted is the expansion of numbers of genes, particularly for immunity, oxidoreductive functions, and digestive enzymes, which may reflect specific aspects of the Culex life cycle. Bartholomay et al. (p. 88) explored infection-response genes in Culex in more depth and uncovered 500 immune response-related genes, similar to the numbers seen in Aedes, but fewer than seen in Anopheles or the fruit fly Drosophila melanogaster. The higher numbers of genes were attributed partly to expansions in those encoding serpins, C-type lectins, and fibrinogen-related proteins, consistent with greater immune surveillance and associated signaling needed to monitor the dangers of breeding in polluted, urbanized environments. Transcriptome analysis confirmed that inoculation with unfamiliar bacteria prompted strong immune responses in Culex. The worm and virus pathogens that the mosquitoes transmit naturally provoked little immune activation, however, suggesting that tolerance has evolved to any damage caused by replication of the pathogens in the insects. The genome of a third mosquito species reveals distinctions related to vector capacities and habitat preferences. Culex quinquefasciatus (the southern house mosquito) is an important mosquito vector of viruses such as West Nile virus and St. Louis encephalitis virus, as well as of nematodes that cause lymphatic filariasis. C. quinquefasciatus is one species within the Culex pipiens species complex and can be found throughout tropical and temperate climates of the world. The ability of C. quinquefasciatus to take blood meals from birds, livestock, and humans contributes to its ability to vector pathogens between species. Here, we describe the genomic sequence of C. quinquefasciatus: Its repertoire of 18,883 protein-coding genes is 22% larger than that of Aedes aegypti and 52% larger than that of Anopheles gambiae with multiple gene-family expansions, including olfactory and gustatory receptors, salivary gland genes, and genes associated with xenobiotic detoxification.


Nature Medicine | 2010

A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection

Wataru Akahata; Zhi Yong Yang; Hanne Andersen; Siyang Sun; Heather A. Holdaway; Wing Pui Kong; Mark G. Lewis; Stephen Higgs; Michael G. Rossmann; Srinivas S. Rao; Gary J. Nabel

Chikungunya virus (CHIKV) has infected millions of people in Africa, Europe and Asia since this alphavirus reemerged from Kenya in 2004. The severity of the disease and the spread of this epidemic virus present a serious public health threat in the absence of vaccines or antiviral therapies. Here, we describe a new vaccine that protects against CHIKV infection of nonhuman primates. We show that selective expression of viral structural proteins gives rise to virus-like particles (VLPs) in vitro that resemble replication-competent alphaviruses. Immunization with these VLPs elicited neutralizing antibodies against envelope proteins from alternative CHIKV strains. Monkeys immunized with VLPs produced high-titer neutralizing antibodies that protected against viremia after high-dose challenge. We transferred these antibodies into immunodeficient mice, where they protected against subsequent lethal CHIKV challenge, indicating a humoral mechanism of protection. Immunization with alphavirus VLP vaccines represents a strategy to contain the spread of CHIKV and related pathogenic viruses in humans.


Transactions of The Royal Society of Tropical Medicine and Hygiene | 2009

Impact of climate change and other factors on emerging arbovirus diseases

Ernest A. Gould; Stephen Higgs

While some skeptics remain unconvinced that global climate change is a reality, there is no doubt that during the past 50 years or so, patterns of emerging arbovirus diseases have changed significantly. Can this be attributed to climate change? Climate is a major factor in determining: (1) the geographic and temporal distribution of arthropods; (2) characteristics of arthropod life cycles; (3) dispersal patterns of associated arboviruses; (4) the evolution of arboviruses; and (5) the efficiency with which they are transmitted from arthropods to vertebrate hosts. Thus, under the influence of increasing temperatures and rainfall through warming of the oceans, and alteration of the natural cycles that stabilise climate, one is inevitably drawn to the conclusion that arboviruses will continue to emerge in new regions. For example, we cannot ignore the unexpected but successful establishment of chikungunya fever in northern Italy, the sudden appearance of West Nile virus in North America, the increasing frequency of Rift Valley fever epidemics in the Arabian Peninsula, and very recently, the emergence of Bluetongue virus in northern Europe. In this brief review we ask the question, are these diseases emerging because of climate change or do other factors play an equal or even more important role in their emergence?


Vaccine | 2010

Preclinical and clinical development of YFV 17D-based chimeric vaccines against dengue, West Nile and Japanese encephalitis viruses

Bruno Guy; Farshad Guirakhoo; Véronique Barban; Stephen Higgs; Thomas P. Monath; Jean Lang

Dengue viruses (DENV), West Nile virus (WNV) and Japanese encephalitis virus (JEV) are major global health and growing medical problems. While a live-attenuated vaccine exists since decades against the prototype flavivirus, yellow fever virus (YFV), there is an urgent need for vaccines against dengue or West Nile diseases, and for improved vaccines against Japanese encephalitis. Live-attenuated chimeric viruses were constructed by replacing the genes coding for Premembrane (prM) and Envelope (E) proteins from YFV 17D vaccine strain with those of heterologous flaviviruses (ChimeriVax technology). This technology has been used to produce vaccine candidates for humans, for construction of a horse vaccine for West Nile fever, and as diagnostic reagents for dengue, Japanese encephalitis, West Nile and St. Louis encephalitis infections. This review focuses on human vaccines and their characterization from the early stages of research through to clinical development. Phenotypic and genetic properties and stability were examined, preclinical evaluation through in vitro or animal models, and clinical testing were carried out. Theoretical environmental concerns linked to the live and genetically modified nature of these vaccines have been carefully addressed. Results of the extensive characterizations are in accordance with the immunogenicity and excellent safety profile of the ChimeriVax-based vaccine candidates, and support their development towards large-scale efficacy trials and registration.


Lancet Infectious Diseases | 2004

West Nile virus: Where are we now?

Bruno P. Granwehr; Kristy M. Lillibridge; Stephen Higgs; Peter W. Mason; Judith F. Aronson; Gerald A. Campbell; Alan D. T. Barrett

Since the publication of a comprehensive review on West Nile virus (WNV) in 2002, there has been substantial progress in understanding of transmission, epidemiology, and geographic distribution of the virus and manifestations of disease produced by the infection. There have also been advances in development of diagnostic and therapeutic agents and vaccines. Nevertheless, many questions about the epidemic remain unanswered, and several new issues have arisen--for example: whether the epidemic will increase as the virus spreads to the Pacific coast of North America; whether arthropods other than mosquitoes will act as vectors for the infection; whether WNV will spread to South America and cause an epidemic there; whether the distribution of WNV in Asia and Europe will increase; and whether adaptation of WNV to new ecosystems will produce viruses with altered genetic and phenotypic properties. This review aims to provide an update on knowledge of WNV biology that can be used to highlight the advances in the field during the past 2 years and help to define the questions that academic, industrial, and public-health communities must address in development of measures to control WNV disease.


Journal of Virology | 2010

Genome-scale phylogenetic analyses of chikungunya virus reveal independent emergences of recent epidemics and various evolutionary rates.

Sara M. Volk; Rubing Chen; Konstantin A. Tsetsarkin; A. Paige Adams; Tzintzuni Garcia; Amadou A. Sall; Farooq Nasar; Amy J. Schuh; Edward C. Holmes; Stephen Higgs; Payal D. Maharaj; Aaron C. Brault; Scott C. Weaver

ABSTRACT Chikungunya virus (CHIKV), a mosquito-borne alphavirus, has traditionally circulated in Africa and Asia, causing human febrile illness accompanied by severe, chronic joint pain. In Africa, epidemic emergence of CHIKV involves the transition from an enzootic, sylvatic cycle involving arboreal mosquito vectors and nonhuman primates, into an urban cycle where peridomestic mosquitoes transmit among humans. In Asia, however, CHIKV appears to circulate only in the endemic, urban cycle. Recently, CHIKV emerged into the Indian Ocean and the Indian subcontinent to cause major epidemics. To examine patterns of CHIKV evolution and the origins of these outbreaks, as well as to examine whether evolutionary rates that vary between enzootic and epidemic transmission, we sequenced the genomes of 40 CHIKV strains and performed a phylogenetic analysis representing the most comprehensive study of its kind to date. We inferred that extant CHIKV strains evolved from an ancestor that existed within the last 500 years and that some geographic overlap exists between two main enzootic lineages previously thought to be geographically separated within Africa. We estimated that CHIKV was introduced from Africa into Asia 70 to 90 years ago. The recent Indian Ocean and Indian subcontinent epidemics appear to have emerged independently from the mainland of East Africa. This finding underscores the importance of surveillance to rapidly detect and control African outbreaks before exportation can occur. Significantly higher rates of nucleotide substitution appear to occur during urban than during enzootic transmission. These results suggest fundamental differences in transmission modes and/or dynamics in these two transmission cycles.


Virology | 2009

Replication cycle of chikungunya: A re-emerging arbovirus

Maxime Solignat; Stephen Higgs; Laurence Briant; Christian Devaux

Arboviruses (or arthropod-borne viruses), represent a threat for the new century. The 2005-2006 year unprecedented epidemics of chikungunya virus (CHIKV) in the French Reunion Island in the Indian Ocean, followed by several outbreaks in other parts of the world such as India, have attracted the attention of clinicians, scientists, and state authorities about the risks linked to this re-emerging mosquito-borne virus. CHIKV, which belongs to the Alphaviruses genus, was not previously regarded as a highly pathogenic arbovirus. However, this opinion was challenged by the death of several CHIKV-infected persons in Reunion Island. The epidemic episode began in December 2005 and four months later the seroprevalence survey report indicated that 236,000 persons, more than 30% of Reunion Island population, had been infected with CHIKV, among which 0.4-0.5% of cases were fatal. Since the epidemic peak, the infection case number has continued to increase to almost 40% of the population, with a total of more than 250 fatalities. Although information available on CHIKV is growing quite rapidly, we are still far from understanding the strategies required for the ecologic success of this virus, virus replication, its interactions with its vertebrate hosts and arthropod vectors, and its genetic evolution. In this paper, we summarize the current knowledge of CHIKV genomic organization, cell tropism, and the virus replication cycle, and evaluate the possibility to predict its future evolution. Such understanding may be applied in order to anticipate future epidemics and reduce the incidence by development and application of, for example, vaccination and antiviral therapy.


Transactions of The Royal Society of Tropical Medicine and Hygiene | 2008

The enhancement of arbovirus transmission and disease by mosquito saliva is associated with modulation of the host immune response

Bradley S. Schneider; Stephen Higgs

Arthropod-borne (arbo-) viruses have emerged as a major human health concern. Viruses transmitted by mosquitoes are the cause of the most serious and widespread arbovirus diseases worldwide and are ubiquitous in both feral and urban settings. Arboviruses, including dengue and West Nile virus, are injected into vertebrates within mosquito saliva during mosquito feeding. Mosquito saliva contains anti-haemostatic, anti-inflammatory and immunomodulatory molecules that facilitate the acquisition of a blood meal. Collectively, studies investigating the effects of mosquito saliva on the vertebrate immune response suggest that at high concentrations salivary proteins are immmunosuppressive, whereas lower concentrations modulate the immune response; specifically, T(H)1 and antiviral cytokines are downregulated, while T(H)2 cytokines are unaffected or amplified. As a consequence, mosquito saliva can impair the antiviral immune response, thus affecting viral infectiousness and host survival. Mounting evidence suggests that this is a mechanism whereby arbovirus pathogenicity is enhanced. In a range of disease models, including various hosts, mosquito species and arthropod-borne viruses, mosquito saliva and/or feeding is associated with a potentiation of virus infection. Compared with arbovirus infection initiated in the absence of the mosquito or its saliva, infection via mosquito saliva leads to an increase in virus transmission, host susceptibility, viraemia, disease progression and mortality.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Chikungunya virus emergence is constrained in Asia by lineage-specific adaptive landscapes

Konstantin A. Tsetsarkin; Rubing Chen; Grace Leal; Naomi L. Forrester; Stephen Higgs; Jing Huang; Scott C. Weaver

Adaptation of RNA viruses to a new host or vector species often results in emergence of new viral lineages. However, lineage-specific restrictions on the adaptive processes remain largely unexplored. Recently, a Chikungunya virus (CHIKV) lineage of African origin emerged to cause major epidemics of severe, persistent, debilitating arthralgia in Africa and Asia. Surprisingly, this new lineage is actively replacing endemic strains in Southeast Asia that have been circulating there for 60 y. This replacement process is associated with adaptation of the invasive CHIKV strains to an atypical vector, the Aedes albopictus mosquito that is ubiquitously distributed in the region. Here we demonstrate that lineage-specific epistatic interactions between substitutions at amino acid positions 226 and 98 of the E1 envelope glycoprotein, the latter of which likely resulted from a founder effect, have for 60 y restricted the ability of endemic Asian CHIKV strains to adapt to this new vector. This adaptive constraint appears to be allowing invasion of the unoccupied vector niche by Ae. albopictus-adapted African strains. These results underscore how different adaptive landscapes occupied by closely related viral genotypes can profoundly affect the outcome of viral evolution and disease emergence.

Collaboration


Dive into the Stephen Higgs's collaboration.

Top Co-Authors

Avatar

Dana L. Vanlandingham

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Charles E. McGee

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Konstantin A. Tsetsarkin

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Bradley S. Schneider

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kate L. Mcelroy

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Ernest A. Gould

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Amelia Travassos da Rosa

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Yvette A. Girard

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge