Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yvette A. Girard is active.

Publication


Featured researches published by Yvette A. Girard.


Applied and Environmental Microbiology | 2012

Two boundaries separate Borrelia burgdorferi populations in North America

Jean I. Tsao; Santiago Castillo-Ramírez; Yvette A. Girard; Sarah A. Hamer; Anne G. Hoen; Robert S. Lane; Steve L. Raper; Nicholas H. Ogden

ABSTRACT Understanding the spread of infectious diseases is crucial for implementing effective control measures. For this, it is important to obtain information on the contemporary population structure of a disease agent and to infer the evolutionary processes that may have shaped it. Here, we investigate on a continental scale the population structure of Borrelia burgdorferi, the causative agent of Lyme borreliosis (LB), a tick-borne disease, in North America. We test the hypothesis that the observed population structure is congruent with recent population expansions and that these were preceded by bottlenecks mostly likely caused by the near extirpation in the 1900s of hosts required for sustaining tick populations. Multilocus sequence typing and complementary population analytical tools were used to evaluate B. burgdorferi samples collected in the Northeastern, Upper Midwestern, and Far-Western United States and Canada. The spatial distribution of sequence types (STs) and inferred population boundaries suggest that the current populations are geographically separated. One major population boundary separated western B. burgdorferi populations transmitted by Ixodes pacificus in California from Eastern populations transmitted by I. scapularis; the other divided Midwestern and Northeastern populations. However, populations from all three regions were genetically closely related. Together, our findings suggest that although the contemporary populations of North American B. burgdorferi now comprise three geographically separated subpopulations with no or limited gene flow among them, they arose from a common ancestral population. A comparative analysis of the B. burgdorferi outer surface protein C (ospC) gene revealed novel linkages and provides additional insights into the genetic characteristics of strains.


International journal for parasitology. Parasites and wildlife | 2014

Trichomonas stableri n. sp., an agent of trichomonosis in Pacific Coast band-tailed pigeons (Patagioenas fasciata monilis)

Yvette A. Girard; Krysta H. Rogers; Richard W. Gerhold; Kirkwood M. Land; Scott C. Lenaghan; Leslie W. Woods; Nathan T. Haberkern; Melissa Hopper; Jeff D. Cann; Christine K. Johnson

Graphical abstract


Infection, Genetics and Evolution | 2014

Dual-pathogen etiology of avian trichomonosis in a declining band-tailed pigeon population

Yvette A. Girard; Krysta H. Rogers; Leslie W. Woods; Nadira Chouicha; Woutrina A. Miller; Christine K. Johnson

The Pacific Coast band-tailed pigeon (Patagioenas fasciata monilis) is a migratory game bird of North America that is at risk for population decline. Epidemics of avian trichomonosis caused by upper digestive tract infection with Trichomonas spp. protozoa in these and other doves and pigeons of the United States are sporadic, but can involve tens of thousands of birds in a single event. Herein, we analyze the role of trichomonosis in band-tailed pigeon mortality and relate spatial, temporal and demographic patterns of parasite transmission to the genetic background of the infecting organism. Infections were most common in adult birds and prevalence was high in band-tailed pigeons sampled at mortality events (96%) and rehabilitation centers (36%) compared to those that were hunter-killed (11%) or live-caught (4%). During non-epidemic periods, animals were primarily infected with T. gallinae Fe-hydrogenase subtype A2, and were less often infected with either T. gallinae subtype A1 (the British finch epidemic strain), T. stableri n. sp. (a T. vaginalis-like species), or Tritrichomonas blagburni n. sp.-like organisms. Birds sampled during multiple epidemics in California were only infected with T. gallinae subtype A2 and T. stableri. The non-clonal etiology of avian trichomonosis outbreaks in band-tailed pigeons and the risk of spill-over to raptor and passerine species highlights the need for additional studies that clarify the host range and evolutionary relationships between strains of Trichomonas spp. in regions of trichomonosis endemicity.


Journal of Wildlife Diseases | 2013

RISK FACTORS FOR EXPOSURE TO FELINE PATHOGENS IN CALIFORNIA MOUNTAIN LIONS (PUMA CONCOLOR)

Janet E. Foley; Pamela K. Swift; Katryna A. Fleer; Steve Torres; Yvette A. Girard; Christine K. Johnson

The primary challenge to mountain lion population viability in California is habitat loss and fragmentation. These habitat impacts could enhance disease risk by increasing contact with domestic animals and by altering patterns of exposure to other wild felids. We performed a serologic survey for feline pathogens in California mountain lions (Puma concolor) using 490 samples from 45 counties collected from 1990 to 2008. Most mountain lions sampled were killed because of depredation or public safety concerns and 75% were adults. Pathogens detected by serosurvey in sampled mountain lions included feline panleukopenia virus (39.0%), feline calicivirus (33.0%), feline coronavirus (FCoV, 15.1%), feline herpesvirus (13.0%), heartworm (12.4%), feline leukemia virus (5.4%), and canine distemper virus (3%). An outbreak of heartworm exposure occurred from 1995 to 2003 and higher than expected levels of FCoV-antibody–positive mountain lions were observed from 2005 to 2008, with foci in southern Mendocino and eastern Lake counties. We show that the majority of mountain lions were exposed to feline pathogens and may be at risk of illness or fatality, particularly kittens. Combined with other stressors, such as ongoing habitat loss, infectious disease deserves recognition for potential negative impact on mountain lion health and population viability.


Journal of Wildlife Diseases | 2012

Pathogen and Rodenticide Exposure in American Badgers (Taxidea taxus) in California

Jessica H. Quinn; Yvette A. Girard; Kirsten V. K. Gilardi; Yvette Z. Hernandez; Robert H. Poppenga; Bruno B. Chomel; Janet E. Foley; Christine K. Johnson

Urban and agricultural land use may increase the risk of disease transmission among wildlife, domestic animals, and humans as we share ever-shrinking and fragmented habitat. American badgers (Taxidae taxus), a species of special concern in California, USA, live in proximity to urban development and often share habitat with livestock and small peridomestic mammals. As such, they may be susceptible to pathogens commonly transmitted at this interface and to anticoagulant rodenticides used to control nuisance wildlife on agricultural lands. We evaluated free-ranging badgers in California for exposure to pathogens and anticoagulant rodenticides that pose a risk to wildlife, domestic animals, or public health. We found serologic evidence of badger exposure to Francisella tularensis, Toxoplasma gondii, Anaplasma phagocytophilum, canine distemper virus, and three Bartonella species: B. henselae, B. clarridgeiae, and B. vinsonii subsp. berkhoffii. Badger tissues contained anticoagulant rodenticides brodifacoum and bromadiolone, commonly used to control periurban rodent pests. These data provide a preliminary investigation of pathogen and toxicant exposure in the wild badger population.


Virus Genes | 2012

Genetic structure of Pacific Flyway avian influenza viruses is shaped by geographic location, host species, and sampling period.

Yvette A. Girard; Jonathan A. Runstadler; Florian Aldehoff; Walter M. Boyce

The eight gene segments of avian influenza virus (AIV) reassort frequently and rapidly to generate novel genotypes and subtypes that are transmissible to a broad range of hosts. There is evidence that AIV can have a restricted host range and can segregate in space and time. Host–virus relationships at the species, geographic, and spatial scales have not been fully defined for AIV populations of the Pacific Flyway, particularly among the diverse waterfowl that occupy the Flyway in Alaska and California. Using the sequence analysis program Bayesian Tip-association Significance testing (BaTS) created for analysis of phylogeny–trait associations, we determined whether the genetic structure of Pacific Flyway AIVs sampled between 2006 and 2008 was influenced by the host species, geographic location of virus collection, and time of sampling. In posterior sets of trees, genetically similar viruses clustered by host species for thick-billed murres and glaucous gulls (order Charadriiformes), and for northern shovelers, northern pintails, and mallards (order Anseriformes). AIVs from Alaska and California were strongly spatially structured, clustering separately by region across all segments. The timing of sampling influenced the genetic structure of California AIV gene segments, possibly reflecting waves of host species movement into wintering areas. The strength of phylogeny–trait association varied by virus segment and by trait of interest, which we hypothesize is related to the frequent genetic reassortment and interspecies transmission in waterfowl.


Vector-borne and Zoonotic Diseases | 2012

Zoonotic vector-borne bacterial pathogens in California Mountain Lions (Puma concolor), 1987-2010

Yvette A. Girard; Pamela K. Swift; Bruno B. Chomel; Rickie W. Kasten; Katryna A. Fleer; Janet E. Foley; Steven G. Torres; Christine K. Johnson

Sera collected from 442 mountain lions in 48 California counties between the years of 1987 and 2010 were tested using immunofluorescence assays and agglutination tests for the presence of antibodies reactive to Yersinia pestis, Francisella tularensis, Bartonella henselae, Borrelia burgdorferi, and Anaplasma phagocytophilum antigens. Data were analyzed for spatial and temporal trends in seropositivity. Seroprevalences for B. burgdorferi (19.9%) and B. henselae (37.1%) were relatively high, with the highest exposure in the Central Coast region for B. henselae. B. henselae DNA amplified in mountain lion samples was genetically similar to human-derived Houston-1 and domestic cat-derived U4 B. henselae strains at the gltA and ftsZ loci. The statewide seroprevalences of Y. pestis (1.4%), F. tularensis (1.4%), and A. phagocytophilum (5.9%), were comparatively low. Sera from Y. pestis- and F. tularensis-seropositive mountain lions were primarily collected in the Eastern and Western Sierra Nevada, and samples reactive to Y. pestis antigen were collected exclusively from adult females. Adult age (≥ 2 years) was a risk factor for B. burgdorferi exposure. Over 70% of tested animals were killed on depredation permits, and therefore were active near areas with livestock and human residential communities. Surveillance of mountain lions for these bacterial vector-borne and zoonotic agents may be informative to public health authorities, and the data are useful for detecting enzootic and peridomestic pathogen transmission patterns, particularly in combination with molecular characterization of the infecting organisms.


Journal of Wildlife Diseases | 2016

Ecologic drivers and population impacts of avian trichomonosis mortality events in band-tailed pigeons (Patagioenas fasciata) in California, USA

Krysta H. Rogers; Yvette A. Girard; Walter D. Koenig; Christine K. Johnson

Abstract:   Avian trichomonosis, a disease typically caused by the protozoan parasite Trichomonas gallinae, is a well recognized cause of death in many avian species. In California, US, trichomonosis has caused periodic epidemics in Pacific Coast Band-tailed Pigeons (Patagioenas fasciata monilis). We summarize reported mortality events and investigate ecologic drivers and population impacts associated with epidemic mortality due to trichomonosis in Band-tailed Pigeons. Between 1945 and 2014, 59 mortality events involving Band-tailed Pigeons were reported in California with the number of reported events increasing over time. Estimated mortality for these events was variable, ranging between 10 and 10,000 pigeons. Events were most-frequently reported in Monterey (19%; 11/59) and San Luis Obispo (8%; 5/59) counties. Events often started in January (32%; 9/28) and February (50%; 14/28) and lasted 5–68 d. Impacts of mortality events on pigeon populations were indicated by Breeding Bird Survey and Christmas Bird Count abundance indices, which showed a decline in outbreak years compared to nonoutbreak years. Environmental conditions most associated with outbreak years included higher average temperatures between January and March, the period most associated with mortality events, and lower average precipitation in December just prior to mortality events. In Monterey County, events tended to occur in winters following higher acorn production of coast live oaks (Quercus agrifolia) in the fall. Weather and food abundance could be related to increased transmission or enhanced viability of Trichomonas spp. Although estimated mortality due to avian trichomonosis was highly variable across years, cumulative losses were substantial and likely to have a negative impact on population size.


International journal for parasitology. Parasites and wildlife | 2016

Detection and characterization of diverse coccidian protozoa shed by California sea lions

Yvette A. Girard; Christine K. Johnson; Heather M. Fritz; Karen Shapiro; Andrea E. Packham; Ann C. Melli; Daphne Carlson-Bremer; Frances M. D. Gulland; Daniel Rejmanek; Patricia A. Conrad

Tissue-cyst forming coccidia in the family Sarcocystidae are etiologic agents of protozoal encephalitis in marine mammals including the federally listed Southern sea otter (Enhydra lutris). California sea lions (Zalophus californianus), whose coastal habitat overlaps with sea otters, are definitive hosts for coccidian protozoa provisionally named Coccidia A, B and C. While Coccidia A and B have unknown clinical effects on aquatic wildlife hosts, Coccidia C is associated with severe protozoal disease in harbor seals (Phoca vitulina). In this study, we conducted surveillance for protozoal infection and fecal shedding in hospitalized and free-ranging California sea lions on the Pacific Coast and examined oocyst morphology and phenotypic characteristics of isolates via mouse bioassay and cell culture. Coccidia A and B were shed in similar frequency, particularly by yearlings. Oocysts shed by one free-ranging sea lion sampled at Año Nuevo State Park in California were previously unidentified in sea lions and were most similar to coccidia infecting Guadalupe fur seals (Arctocephalus townsendi) diagnosed with protozoal disease in Oregon (USA). Sporulated Coccidia A and B oocysts did not replicate in three strains of mice or in African green monkey kidney cells. However, cultivation experiments revealed that the inoculum of fecally-derived Coccidia A and B oocysts additionally contained organisms with genetic and antigenic similarity to Sarcocystis neurona; despite the absence of detectable free sporocysts in fecal samples by microscopic examination. In addition to the further characterization of Coccidia A and B in free-ranging and hospitalized sea lions, these results provide evidence of a new role for sea lions as putative mechanical vectors of S. neurona, or S. neurona-like species. Future work is needed to clarify the distribution, taxonomical status, and pathogenesis of these parasites in sea lions and other marine mammals that share their the near-shore marine environment.


International journal for parasitology. Parasites and wildlife | 2016

Avian trichomonosis in spotted owls (Strix occidentalis): Indication of opportunistic spillover from prey

Krysta H. Rogers; Yvette A. Girard; Leslie W. Woods; Christine K. Johnson

Avian trichomonosis, caused by the flagellated protozoan parasite Trichomonas gallinae, has variable pathogenicity among bird species ranging from asymptomatic infections to severe disease periodically manifesting in epidemic mortality. Traditionally, columbids are identified as highly susceptible to infection with occasional spillover into raptors that prey on infected birds. We identified avian trichomonosis in two dead California spotted owls (Strix occidentalis occidentalis) and three dead northern spotted owls (S. o. caurina) in California during 2011–2015; infection was confirmed in four owls by PCR. Pathologic lesions associated with trichomonosis in the owls included caseonecrotic lesions of the upper palate accompanied by oropharyngitis, cellulitis, myositis, and/or sinusitis. Spotted owls are known to mainly feed on small mammals; therefore, the source of infection as well as the significance of the disease in spotted owls is unclear. These owl trichomonosis cases coincided temporally and spatially with three trichomonosis epidemics in band-tailed pigeons (Patagioenas fasciata monilis). The same parasite, T. gallinae subtype A2, was isolated from the spotted owls and band-tailed pigeons, suggesting the owls became infected when opportunistically feeding on pigeons during mortality events. Avian trichomonosis is an important factor in the decline of the Pacific Coast band-tailed pigeon population with near-annual mortality events during the last 10 years and could have conservation implications for raptor species at risk, particularly those that are facing multiple threats.

Collaboration


Dive into the Yvette A. Girard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Krysta H. Rogers

California Department of Fish and Wildlife

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janet E. Foley

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pamela K. Swift

California Department of Fish and Wildlife

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann C. Melli

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge