Stephen J. Culver
East Carolina University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephen J. Culver.
Geology | 2009
Andrew C. Kemp; Benjamin P. Horton; Stephen J. Culver; D. Reide Corbett; Orson van de Plassche; W. Roland Gehrels; Bruce C. Douglas; Andrew C. Parnell
We provide records of relative sea level since A.D. 1500 from two salt marshes in North Carolina to complement existing tide-gauge records and to determine when recent rates of accelerated sea-level rise commenced. Reconstructions were developed using foraminifera-based transfer functions and composite chronologies, which were validated against regional twentieth century tide-gauge records. The measured rate of relative sea-level rise in North Carolina during the twentieth century was 3.0–3.3 mm/a, consisting of a background rate of ~1 mm/a, plus an abrupt increase of 2.2 mm/a, which began between A.D. 1879 and 1915. This acceleration is broadly synchronous with other studies from the Atlantic coast. The magnitude of the acceleration at both sites is larger than at sites farther north along the U.S. and Canadian Atlantic coast and may be indicative of a latitudinal trend.
Marine Micropaleontology | 2003
Stephen J. Culver
Abstract The response of the Earth’s biota to global change is of fundamental interest to paleontologists, but patterns of change in paleontologic data are also of interest to a wider spectrum of Earth scientists in that those patterns are of great significance in constraining hypotheses that attempt to explain physical changes in the Earth’s environment. The Cretaceous–Tertiary (K–T) boundary is a case in point. Some paleontologists have criticized the bolide impact hypothesis, not because they deny the impact but because the proposed effects of that impact do not always conform to the available paleontological data. Benthic foraminifera are of particular interest in this context because it has been suggested for over 20 years that shallow-water benthic foraminifera were affected more severely than deep-water benthic foraminifera by events at the K–T boundary. This observation adds to the fact of planktonic foraminiferal extinction and indicates that K–T boundary environmental effects were largely restricted to shallow waters. In this paper I review all published works on smaller benthic foraminifera at the K–T boundary and conclude the following. (1) Shallow-water benthic foraminifera were not more severely affected than deeper dwelling species. True extinction, as opposed to local extinction and/or mass mortality, is generally quite low no matter what the water depth. (2) The data are not sufficient in quality, quantity and geographic range to conclude that there is a latitudinal pattern of extinction. (3) In general, biotic changes (such as they are) begin before the boundary in shallow and intermediate depth waters and at the boundary in deep water. Disagreements about the placement of the boundary and the presence, absence and duration of hiatuses hinder more precise conclusions. (4) There appears to be preferential survivorship of epifaunal species into the early Danian with a short interval dominated by infaunal taxa in the earliest Danian. This pattern can best be explained by short-lived input of increased amounts of organic matter at the boundary followed by a sudden collapse of primary productivity and, hence, major reduction or cessation of organic flux to the seafloor. In summary, based on the current dataset, smaller benthic foraminifera, no matter whether they lived in shallow or deep waters, high or low latitudes, or infaunal or epifaunal microhabitats, survived the environmental events across the K–T boundary quite well. Mass extinction does not characterize this group of organisms at this time.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Martin A. Buzas; Laurel S. Collins; Stephen J. Culver
Tropical diversity has generally exceeded temperate diversity in the present and at points in the past, but whether measured differences have remained relatively constant through time has been unknown. Here we examine tropical vs. temperate diversities from the Neogene to Recent using the within-habitat diversity measure Fishers alpha of Cenozoic benthic foraminifera from the temperate Central Atlantic Coastal Plain and the tropical Central American Isthmus. During the Neogene, the mean value of alpha at temperate latitudes increased 1.4 times or 40%, whereas in the tropics it increased 2.1 times or 106%. Thus, while both areas exhibit an increase of diversity with time, past differences in the rate of increase have generated a more pronounced gradient today (164%) than existed in the Miocene (80%). These data disagree with the suggestion that the world reached an equilibrium number of species during the Paleozoic and demonstrate the need to consider both temperate and tropical components in global diversity assessments.
Journal of Foraminiferal Research | 2005
Stephen J. Culver; Benjamin P. Horton
The distribution and abundance patterns of live (rose Bengal stained) and dead, shallow infaunal (0–1 cm depth) and deep infaunal (1 cm depth) benthic foraminifera have been documented at three locations representing different salinity settings on the fringing marshes along the Pamlico Sound and Currituck Sound coasts of North Carolina’s Outer Banks. Two cores taken at each site represent the lower and higher marsh. Twenty-two taxa were recorded as live. Of these, eight taxa were found only at shallow infaunal depths; the other 14 taxa occur at deep infaunal depths in one or more cores. Only Jadammina macrescens and Tiphotrocha comprimata were recorded as living in all six cores. The distributions of the other taxa were restricted by combinations of the criteria of infaunal depth, salinity regime and location on the marsh. The tests of infaunal foraminifera were generally more likely to be preserved in the lower marsh than the higher marsh at low- and intermediate-salinity sites. The opposite pattern was evident at the high-salinity site but this may be due to the low numbers of deep infaunal specimens recovered. Arenoparrella mexicana, Haplophragmoides wilberti, Jadammina macrescens and Trochammina inflata are the most resistant taxa, whereas Miliammina fusca is the species whose tests are most likely to be lost to post-mortem degradation. In five of six cores, foraminiferal assemblages and populations do not differ significantly with depth which suggests that the foraminifera of the 0–1 cm depth interval provide an adequate model upon which paleoenvironmental (including former sea level) reconstructions can be based.
Paleobiology | 1982
Martin A. Buzas; Carl F. Koch; Stephen J. Culver; Norman F. Sohl
The distribution of species abundance (number of individuals per species) is well documented. The distribution of species occurrence (number of localities per species), however, has received little attention. This study investigates the distribution of species occurrence for five large data sets. For modern benthic foraminifera, species occurrence is examined from the Atlantic continental margin of North America, where 875 species were recorded 10,017 times at 542 localities, the Gulf of Mexico, where 848 species were recorded 18,007 times at 426 localities, and the Caribbean, where 1149 species were recorded 6684 times at 268 localities. For Late Cretaceous molluscs, species occurrence is examined from the Gulf Coast where 716 species were recorded 6236 times at 166 localities and a subset of this data consisting of 643 species recorded 3851 times at 86 localities. Logseries and lognormal distributions were fitted to these data sets. In most instances the logseries best predicts the distribution of species occurrence. The lognormal, however, also fits the data fairly well, and, in one instance, better. The use of these distributions allows the prediction of the number of species occurring once, twice, …, n times. Species abundance data are also available for the molluscan data sets. They indicate that the most abundant species (greatest number of individuals) usually occur most frequently. In all data sets approximately half the species occur four or less times. The probability of noting the presence of rarely occurring species is small, and, consequently, such species must be used with extreme caution in studies requiring knowledge of the distribution of species in space and time.
The Holocene | 2010
Andrew C. Kemp; Christopher H. Vane; Benjamin P. Horton; Stephen J. Culver
We compared the use of δ13C values and C:N ratios from salt-marsh sediments to reconstruct relative sea level (RSL) with an established approach using foraminifera. Analysis of bulk-organic sediment and plant samples collected along transects at two sites in North Carolina, USA demonstrates that sediment δ13C values can be used to distinguish between Spartina alterniflora-dominated low marsh (C photosynthetic pathway, δ13C values from —17.6‰ to 16.1‰) and Juncus roemerianus-dominated high marsh (C 3 photosynthetic pathway, δ13C values from —28.2‰ to —21.8‰) environments. Juncus roemerianus plants undergo little decompositional change in δ13C (average 0.8‰), although there is a clear difference between Spartina alterniflora tissue and bulk-organic sediments (approximately 4‰). C:N ratios on bulk-organic sediment from freshwater upland and salt-marsh environments converge during early diagenesis, rendering them of little use in reconstructing RSL. The utility of δ13C values as a sea-level indicator is limited by the elevational range of C4 plants, making it difficult to recognize salt-marsh subenvironments and improve the precision of RSL reconstructions. Furthermore, Juncus roemerianus-dominated high marsh and freshwater upland sediments cannot be adequately distinguished with δ13C values.
BioScience | 1991
Martin A. Buzas; Stephen J. Culver
he foraminifera, shelled protozoans usually less than 1 mm in diameter, exhibit a wide variety of morphology (Figure 1). Benthic foraminifera are distributed in all marine environments from marshes and bays to abyssal depths. Usually a few milliliters of sediment contain hundreds of individuals and tens of species. When they reproduce or die, their shells, called tests, become part of the sediment and, subsequently, the fossil record. In contrast with the fossil records of most organisms, the tests of the foraminifera provide a worldwide historic record extending from the Cambrian to the Recent. For this reason, they have been extensively studied for more than 100 years. Approximately 40,000 species of foraminifera have been identified, Most of these are extinct, but several thousand species still live in Earths oceans. The large number of individuals in a small amount of sediment, the many species, the worldwide distribution, an excellent fossil record, and much previous study make the foraminifera an ideal group for examining the distribution of species in space and time. Overall patterns of species diversity for modern benthic foraminifera are Species longevity requires most species to disperse into more than one
Journal of Coastal Research | 2006
Stephen J. Culver; Dorothea Ames; D. Reide Corbett; David J. Mallinson; Stanley R. Riggs; Christopher G. Smith; D. J. Vance
Abstract Foraminiferal and sedimentary data, supplemented with geochemical dating and ground-penetrating radar transects, show that the barrier island at Pea Island National Wildlife Refuge just north of Rodanthe, North Carolina, has been dominated by a combination of inlet and overwash processes for at least 1000 years. The stratigraphic record of several vibracores does not preserve every, or even many, overwash events but, instead, is characterized by three to four fining-upward sequences. The last three commence with overwash sand or gravel that is overlain by a variety of finer-grained estuarine, inlet, and marsh deposits. The dynamic nature of this segment of the Outer Banks was muted in the late 1930s by construction of artificial barrier dune ridges, extensive planting of grass and shrubs, and construction of Highway 12 in 1953. Subsequently, the road and barrier dune ridge were rebuilt and relocated several times following storm events.
Journal of Paleontology | 1996
Stephen J. Culver; John E. Repetski; John Pojeta; David Hunt
ABsTRACr-Supposed Upper Proterozoic strata in the southwest Taoudeni Basin, Guinea and Senegal, and from the Mauritanide fold belt, Mauritania, have yielded mostly poorly preserved small skeletal fossils of metazoan and protistan origin. Problematic, but possible echinoderm material and spicules of the heteractinid sponge Eiffelia dominate the Taoudeni Basin assemblage. The age of the material is not certain but the paleontologic data suggest an Early Cambrian age for the stratigraphically lowest faunas, and a Middle Cambrian age is possible for the stratigraphically highest collections.
In: Predator-Prey Interactions in the Fossil Record. , ed. by Kelley, Patricia H., Kowalewski, Michael and Hansen, Thor A. Kluwer Academic/Plenum Publishers, New York, pp. 7-32. | 2003
Stephen J. Culver; Jere H. Lipps
Foraminifera are diverse and numerically important in most marine ecosystems and have been since the early Paleozoic. Their ecology and distribution have been studied extensively across the globe (Murray, 1991). They are also important in the geologic record, being one of the best represented fossil organisms since the Cambrian (Culver, 1991; Lipps, 1992). Foraminifera are widely used in ecologic, paleobiologic, paleoceanographic, and paleoclimatic analyses. Yet we know little about their trophic relationships, a fundamental ecologic feature of any group of organisms.