Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen J. Florczyk is active.

Publication


Featured researches published by Stephen J. Florczyk.


Biomaterials | 2010

Chitosan-alginate 3D scaffolds as a mimic of the glioma tumor microenvironment

Forrest M. Kievit; Stephen J. Florczyk; Matthew Leung; Omid Veiseh; James O. Park; Mary L. Disis; Miqin Zhang

Despite recent advances in the understanding of its cell biology, glioma remains highly lethal. Development of effective therapies requires a cost-effective in vitro tumor model that more accurately resembles the in vivo tumor microenvironment as standard two-dimensional (2D) tissue culture conditions do so poorly. Here we report on the use of a three-dimensional (3D) chitosan-alginate (CA) scaffold to serve as an extracellular matrix that promotes the conversion of cultured cancer cells to a more malignant in vivo-like phenotype. Human U-87 MG and U-118 MG glioma cells and rat C6 glioma cells were chosen for the study. In vitro tumor cell proliferation and secretion of factors that promote tumor malignancy, including VEGF, MMP-2, fibronectin, and laminin, were assessed. The scaffolds pre-cultured with U-87 MG and C6 cells were then implanted into nude mice to evaluate tumor growth and blood vessel recruitment compared to the standard 2D cell culture and 3D Matrigel matrix xenograft controls. Our results indicate that while the behavior of C6 cells showed minimal differences due to their highly malignant and invasive nature, U-87 MG and U-118 MG cells exhibited notably higher malignancy when cultured in CA scaffolds. CA scaffolds provide a 3D microenvironment for glioma cells that is more representative of the in vivo tumor, thus can serve as a more effective platform for development and study of anticancer therapeutics. This unique CA scaffold platform may offer a valuable alternative strategy to the time-consuming and costly animal studies for a wide variety of experimental designs.


Biomaterials | 2013

Porous chitosan-hyaluronic acid scaffolds as a mimic of glioblastoma microenvironment ECM

Stephen J. Florczyk; Kui Wang; Soumen Jana; David L. Wood; Samara K. Sytsma; Jonathan G. Sham; Forrest M. Kievit; Miqin Zhang

Cancer therapeutics are developed through extensive screening; however, many therapeutics evaluated with 2D in vitro cultures during pre-clinical trials suffer from lower efficacy in patients. Replicating the in vivo tumor microenvironment in vitro with three-dimensional (3D) porous scaffolds offers the possibility of generating more predictive pre-clinical models to enhance cancer treatment efficacy. We developed a chitosan and hyaluronic acid (HA) polyelectrolyte complex 3D porous scaffold and evaluated its physical properties. Chitosan-HA (C-HA) scaffolds had a highly porous network. C-HA scaffolds were compared to 2D surfaces for in vitro culture of U-118 MG human glioblastoma (GBM) cells. C-HA scaffold cultures promoted tumor spheroid formation and increased stem-like properties of GBM cells as evidenced by the upregulation of CD44, Nestin, Musashi-1, GFAP, and HIF-1α as compared with 2D cultures. Additionally, the invasiveness of GBM cells cultured in C-HA scaffolds was significantly enhanced compared to those grown in 2D cultures. C-HA scaffold cultures were also more resistant to chemotherapy drugs, which corresponded to the increased expression of ABCG2 drug efflux transporter. These findings suggest that C-HA scaffolds offer promise as an in vitro GBM platform for study and screening of novel cancer therapeutics.


Pharmaceutical Research | 2010

Chitosan-Alginate Scaffold Culture System for Hepatocellular Carcinoma Increases Malignancy and Drug Resistance

Matthew Leung; Forrest M. Kievit; Stephen J. Florczyk; Omid Veiseh; Jennifer D. Wu; James O. Park; Miqin Zhang

ABSTRACTPurposeHepatocellular carcinoma (HCC) is a prevalent solid malignancy. Critically needed discovery of new therapeutics has been hindered by lack of an in vitro cell culture system that can effectively represent the in vivo tumor microenvironment. To address this need, a 3D in vitro HCC model was developed using a biocompatible, chitosan-alginate (CA) scaffold cultured with human HCC cell lines.MethodsThe correlation between the cell function, such as secretion of growth factors and production of ECM in vitro, and the tumor growth and blood vessel recruitment in vivo was investigated.ResultsHCC cells grown on 3D CA scaffolds demonstrated morphological characteristics and increased expression of markers of highly malignant cells. Implantation of CA scaffolds cultured with human HCC cells in mice showed accelerated tumor growth. Histology revealed marked differences in morphology and organization of newly formed blood vessels between tumors produced by different pre-cultured conditions. Resistance to doxorubicin was significantly pronounced in CA scaffold-cultured HCC cells compared to 2D or Matrigel cultured HCC cells.ConclusionsThis 3D model of HCC, with its ability to more closely mimic the in vivo tumor behavior, may serve as an invaluable model for study and application of novel anticancer therapeutics against HCC.


Journal of Materials Chemistry | 2012

High-strength pristine porous chitosan scaffolds for tissue engineering

Soumen Jana; Stephen J. Florczyk; Matthew Leung; Miqin Zhang

Chitosan, a biodegradable naturally occurring polymer, has drawn considerable attention in recent years as a scaffolding material in tissue engineering and regenerative medicine. Despite its favorable biological properties, the weak mechanical strength of scaffolds produced from chitosan has limited the scope of their application. Here we fabricated 3D pristine porous chitosan scaffolds with unprecedented mechanical strength and investigated the regulatory role of chitosan and acidic concentrations on the crystallinity and thus on the mechanical and biological properties of produced scaffolds. Chitosan scaffolds of varying mechanical properties were prepared from solutions with chitosan concentrations of 4–12 wt%. The produced scaffolds showed no apparent shape change after immersion in Dulbeccos Modified Eagle Medium (DMEM), phosphate buffered saline, and simulated body fluid for two weeks. We showed that the crystallinity of the scaffold increased with increasing chitosan concentration or decreasing solution acidity, and the maximum compressive mechanical strength and modulus of 1.74 ± 0.01 MPa and 17.99 ± 0.11 MPa, respectively, were achieved at a chitosan concentration of 12 wt%. MG-63 osteoblast cells demonstrated improved adhesion, proliferation and osteogenic activity on chitosan scaffolds of increased chitosan concentration or mechanical strength. The ability to produce high-strength chitosan scaffolds and engineer their mechanical properties can substantially expand the applicability of chitosan in tissue engineering as well as other engineering applications.


Advanced Healthcare Materials | 2012

3D Porous Chitosan–Alginate Scaffolds: A New Matrix for Studying Prostate Cancer Cell–Lymphocyte Interactions In Vitro

Stephen J. Florczyk; Gang Liu; Forrest M. Kievit; Allison M. Lewis; Jennifer D. Wu; Miqin Zhang

The treatment of castration-resistant prostate cancer (CRPC) remains palliative. Immunotherapy offers a potentially effective therapy for CRPC; however, its advancement into the clinic has been slow, in part because of the lack of representative in vitro tumor models that resemble the in vivo tumor microenvironment for studying interactions of CRPC cells with immune cells and other potential therapeutics. This study evaluates the use of 3D porous chitosan-alginate (CA) scaffolds for culturing human prostate cancer (PCa) cells and studying tumor cell interaction with human peripheral blood lymphocytes (PBLs) ex vivo. CA scaffolds and Matrigel matrix samples support in vitro tumor spheroid formation over 15 d of culture, and CA scaffolds support live-cell fluorescence imaging with confocal microscopy using stably transfected PCa cells for 55 d. PCa cells grown in Matrigel matrix and CA scaffolds for 15 d are co-cultured with PBLs for 2 and 6 d in vitro and evaluated with scanning electron microscopy (SEM), immunohistochemistry (IHC), and flow cytometry. Both the Matrigel matrix and CA scaffolds support interaction of PBLs with PCa tumors, with CA scaffolds providing a more robust platform for subsequent analyses. This study demonstrates the use of 3D natural polymer scaffolds as a tissue culture model for supporting long-term analysis of interaction of prostate cancer tumor cells with immune cells, providing an in vitro platform for rapid immunotherapy development.


Journal of Biomedical Materials Research Part A | 2011

Influence of processing parameters on pore structure of 3D porous chitosan–alginate polyelectrolyte complex scaffolds†

Stephen J. Florczyk; Dae Joon Kim; David L. Wood; Miqin Zhang

Fabrication of porous polymeric scaffolds with controlled structure can be challenging. In this study, we investigated the influence of key experimental parameters on the structures and mechanical properties of resultant porous chitosan-alginate (CA) polyelectrolyte complex (PEC) scaffolds, and on proliferation of MG-63 osteoblast-like cells, targeted at bone tissue engineering. We demonstrated that the porous structure is largely affected by the solution viscosity, which can be regulated by the acetic acid and alginate concentrations. We found that the CA PEC solutions with viscosity below 300 Pa.s yielded scaffolds of uniform pore structure and that more neutral pH promoted more complete complexation of chitosan and alginate, yielding stiffer scaffolds. CA PEC scaffolds produced from solutions with viscosities below 300 Pa.s also showed enhanced cell proliferation compared with other samples. By controlling the key experimental parameters identified in this study, CA PEC scaffolds of different structures can be made to suit various tissue engineering applications.


Advanced Healthcare Materials | 2013

Integrated bi-layered scaffold for osteochondral tissue engineering.

Anna Galperin; Rachael A. Oldinski; Stephen J. Florczyk; James D. Bryers; Miqin Zhang; Buddy D. Ratner

Osteochondral tissue engineering poses the challenge of combining both cartilage and bone tissue engineering fundamentals. In this study, a sphere-templating technique was applied to fabricate an integrated bi-layered scaffold based on degradable poly(hydroxyethyl methacrylate) hydrogel. One layer of the integrated scaffold was designed with a single defined, monodispersed pore size of 38 μm and pore surfaces coated with hydroxyapatite particles to promote regrowth of subchondral bone while the second layer had 200 μm pores with surfaces decorated with hyaluronan for articular cartilage regeneration. Mechanical properties of the construct as well as cyto-compatibility of the scaffold and its degradation products were elucidated. To examine the potential of the biphasic scaffold for regeneration of osteochondral tissue the designated cartilage and bone layers of the integrated bi-layered scaffold were seeded with chondrocytes differentiated from human mesenchymal stem cells and primary human mesenchymal stem cells, respectively. Both types of cells were co-cultured within the scaffold in standard medium without soluble growth/differentiation factors over four weeks. The ability of the integrated bi-layered scaffold to support simultaneous matrix deposition and adequate cell growth of two distinct cell lineages in each layer during four weeks of co-culture in vitro in the absence of soluble growth factors was demonstrated.


Journal of Biomedical Materials Research Part A | 2013

Evaluation of three-dimensional porous chitosan-alginate scaffolds in rat calvarial defects for bone regeneration applications.

Stephen J. Florczyk; Matthew Leung; Zhensheng Li; Jerry I. Huang; Richard A. Hopper; Miqin Zhang

This study investigated the use of three-dimensional porous chitosan-alginate (CA) scaffolds for critical size calvarial defect (diameter, 5.0 mm) repair in Sprague-Dawley rats. CA scaffolds have been used for in vitro culture of many cell types and demonstrated osteogenesis in ectopic locations in vivo, but have yet to be evaluated for functional bone tissue engineering applications. CA scaffolds demonstrated the ability to support undifferentiated mesenchymal stem cells (MSCs) in culture for 14 days in vitro and promoted spherical morphology. In vivo tests were performed using CA scaffolds and CA scaffolds with treatments including undifferentiated MSCs, bone marrow aspirate, and bone morphogenetic protein-2 (BMP-2) growth factor in comparison to unfilled bone defect used as a control. The samples were analyzed with MicroCT, histology, and immunohistochemical staining at 4 and 16 weeks. Partial defect closure was observed in all experimental groups at 16 weeks, with the greatest defect closure (71.56 ± 19.74%) in the animal group treated with CA scaffolds with BMP-2 (CA + BMP-2). The experimental samples demonstrated osteogenesis in histology and immunohistochemical staining, with the CA + BMP-2 group, showing the greatest level of osteogenesis. Tissue engineered CA scaffolds show promise in reconstruction of critical size bone defects.


Biomacromolecules | 2015

3D Porous Chitosan–Alginate Scaffolds as an In Vitro Model for Evaluating Nanoparticle-Mediated Tumor Targeting and Gene Delivery to Prostate Cancer

Kui Wang; Forrest M. Kievit; Stephen J. Florczyk; Zachary R. Stephen; Miqin Zhang

Cationic nanoparticles (NPs) for targeted gene delivery are conventionally evaluated using 2D in vitro cultures. However, this does not translate well to corresponding in vivo studies because of the marked difference in NP behavior in the presence of the tumor microenvironment. In this study, we investigated whether prostate cancer (PCa) cells cultured in three-dimensional (3D) chitosan-alginate (CA) porous scaffolds could model cationic NP-mediated gene targeted delivery to tumors in vitro. We assessed in vitro tumor cell proliferation, formation of tumor spheroids, and expression of marker genes that promote tumor malignancy in CA scaffolds. The efficacy of NP-targeted gene delivery was evaluated in PCa cells in 2D cultures, PCa tumor spheroids grown in CA scaffolds, and PCa tumors in a mouse TRAMP-C2 flank tumor model. PCa cells cultured in CA scaffolds grew into tumor spheroids and displayed characteristics of higher malignancy as compared to those in 2D cultures. Significantly, targeted gene delivery was only observed in cells cultured in CA scaffolds, whereas cells cultured on 2D plates showed no difference in gene delivery between targeted and nontarget control NPs. In vivo NP evaluation confirmed targeted gene delivery, indicating that only CA scaffolds correctly modeled NP-mediated targeted delivery in vivo. These findings suggest that CA scaffolds serve as a better in vitro platform than 2D cultures for evaluation of NP-mediated targeted gene delivery to PCa.


Biomacromolecules | 2013

Three-Dimensional Scaffolds to Evaluate Tumor Associated Fibroblast-Mediated Suppression of Breast Tumor Specific T Cells

Vy Phan-Lai; Stephen J. Florczyk; Forrest M. Kievit; Kui Wang; Ekram Gad; Mary L. Disis; Miqin Zhang

In the tumor microenvironment, the signals from tumor-associated fibroblasts (TAF) that suppress antitumor immunity remain unclear. Here, we develop and investigate an in vitro three-dimensional (3D) scaffold model for the novel evaluation of TAF interaction with breast tumor cells and breast specific, neu antigen (p98) reactive T cells. Breast cancer cells seeded on 3D chitosan-alginate (CA) scaffolds showed productive growth and formed distinct tumor spheroids. Antigen specific p98 T cells, but not naïve T cells, bound significantly better to tumor cells on scaffolds. The p98 T cells induced potent tumor cell killing but T helper cell cytokine function was impaired in the presence of TAF coseeding on scaffolds. We found that the immunosuppression was mediated, in part, by transforming growth factor beta (TGF-b) and interleukin-10 (IL-10). Therefore, TAF appear capable of inducing potent T cell suppression. CA scaffolds can provide clinically relevant findings prior to preclinical testing of novel immunotherapies.

Collaboration


Dive into the Stephen J. Florczyk's collaboration.

Top Co-Authors

Avatar

Miqin Zhang

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kui Wang

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Matthew Leung

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Carl G. Simon

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Derek Juba

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Jennifer D. Wu

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Mary Brady

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Mary L. Disis

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Mylene Simon

National Institute of Standards and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge