Mary L. Disis
University of Washington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mary L. Disis.
Nature Medicine | 2004
Tyler J. Curiel; George Coukos; Linhua Zou; Xavier Alvarez; Pui Cheng; Peter Mottram; Melina Evdemon-Hogan; Jose R. Conejo-Garcia; Lin Zhang; Matthew E. Burow; Yun Zhu; Shuang Wei; Ilona Kryczek; Ben Daniel; Alan N. Gordon; Leann Myers; Andrew A. Lackner; Mary L. Disis; Keith L. Knutson; Lieping Chen; Weiping Zou
Regulatory T (Treg) cells mediate homeostatic peripheral tolerance by suppressing autoreactive T cells. Failure of host antitumor immunity may be caused by exaggerated suppression of tumor-associated antigen–reactive lymphocytes mediated by Treg cells; however, definitive evidence that Treg cells have an immunopathological role in human cancer is lacking. Here we show, in detailed studies of CD4+CD25+FOXP3+ Treg cells in 104 individuals affected with ovarian carcinoma, that human tumor Treg cells suppress tumor-specific T cell immunity and contribute to growth of human tumors in vivo. We also show that tumor Treg cells are associated with a high death hazard and reduced survival. Human Treg cells preferentially move to and accumulate in tumors and ascites, but rarely enter draining lymph nodes in later cancer stages. Tumor cells and microenvironmental macrophages produce the chemokine CCL22, which mediates trafficking of Treg cells to the tumor. This specific recruitment of Treg cells represents a mechanism by which tumors may foster immune privilege. Thus, blocking Treg cell migration or function may help to defeat human cancer.
Cancer Immunology, Immunotherapy | 2005
Keith L. Knutson; Mary L. Disis
Historically, cancer-directed immune-based therapies have focused on eliciting a cytotoxic T cell (CTL) response, primarily due to the fact that CTL can directly kill tumors. In addition, many putative tumor antigens are intracellular proteins, and CTL respond to peptides presented in the context of MHC class I which are most often derived from intracellular proteins. Recently, increasing importance is being given to the stimulation of a CD4+ T helper cell (Th) response in cancer immunotherapy. Th cells are central to the development of an immune response by activating antigen-specific effector cells and recruiting cells of the innate immune system such as macrophages and mast cells. Two predominant Th cell subtypes exist, Th1 and Th2. Th1 cells, characterized by secretion of IFN-γ and TNF-α, are primarily responsible for activating and regulating the development and persistence of CTL. In addition, Th1 cells activate antigen-presenting cells (APC) and induce limited production of the type of antibodies that can enhance the uptake of infected cells or tumor cells into APC. Th2 cells favor a predominantly humoral response. Particularly important during Th differentiation is the cytokine environment at the site of antigen deposition or in the local lymph node. Th1 commitment relies on the local production of IL-12, and Th2 development is promoted by IL-4 in the absence of IL-12. Specifically modulating the Th1 cell response against a tumor antigen may lead to effective immune-based therapies. Th1 cells are already widely implicated in the tissue-specific destruction that occurs during the pathogenesis of autoimmune diseases, such as diabetes mellitus and multiple sclerosis. Th1 cells directly kill tumor cells via release of cytokines that activate death receptors on the tumor cell surface. We now know that cross-priming of the tumor-specific response by potent APC is a major mechanism of the developing endogenous immune response; therefore, even intracellular proteins can be presented in the context of MHC class II. Indeed, recent studies demonstrate the importance of cross-priming in eliciting CTL. Many vaccine strategies aim to stimulate the Th response specific for a tumor antigen. Early clinical trials have shown that focus on the Th effector arm of the immune system can result in significant levels of both antigen-specific Th cells and CTL, the generation of long lasting immunity, and a Th1 phenotype resulting in the development of epitope spreading.
Journal of Clinical Oncology | 2002
Mary L. Disis; Theodore A. Gooley; Kristine Rinn; Donna R. Davis; Michael Piepkorn; Martin A. Cheever; Keith L. Knutson; Kathy Schiffman
PURPOSE The HER-2/neu protein is a nonmutated tumor antigen that is overexpressed in a variety of human malignancies, including breast and ovarian cancer. Many tumor antigens, such as MAGE and gp100, are self-proteins; therefore, effective vaccine strategies must circumvent tolerance. We hypothesized that immunizing patients with subdominant peptide epitopes derived from HER-2/neu, using an adjuvant known to recruit professional antigen-presenting cells, granulocyte-macrophage colony-stimulating factor, would result in the generation of T-cell immunity specific for the HER-2/neu protein. PATIENTS AND METHODS Sixty-four patients with HER-2/neu-overexpressing breast, ovarian, or non-small-cell lung cancers were enrolled. Vaccines were composed of peptides derived from potential T-helper epitopes of the HER-2/neu protein admixed with granulocyte-macrophage colony-stimulating factor and administered intradermally. Peripheral-blood mononuclear cells were evaluated at baseline, before vaccination, and after vaccination for antigen-specific T-cell immunity. Immunologic response data are presented on the 38 subjects who completed six vaccinations. Toxicity data are presented on all 64 patients enrolled. RESULTS Ninety-two percent of patients developed T-cell immunity to HER-2/neu peptides (stimulation index, 2.1 to 59) and 68% to a HER-2/neu protein domain (stimulation index range, 2 to 31). Epitope spreading was observed in 84% of patients and significantly correlated with the generation of a HER-2/neu protein-specific T-cell immunity (P =.03). At 1-year follow-up, immunity to the HER-2/neu protein persisted in 38% of patients. CONCLUSION The majority of patients with HER-2/neu-overexpressing cancers can develop immunity to both HER-2/neu peptides and protein. In addition, the generation of protein-specific immunity, after peptide immunization, was associated with epitope spreading, reflecting the initiation of an endogenous immune response. Finally, immunity can persist after active immunizations have ended.
Journal of Clinical Oncology | 1997
Mary L. Disis; Serenella M. Pupa; Julie R. Gralow; Ruggero Dittadi; Sylvie Ménard; Martin A. Cheever
PURPOSE To evaluate HER-2/neu-specific antibody immunity in patients with breast cancer, to determine the rate of occurrence of serum antibodies to HER-2/neu in patients with breast cancer, and to relate the presence of specific immunity to overexpression of HER-2/neu protein in primary tumor. METHODS The antibody response to HER-2/neu protein was analyzed in 107 newly diagnosed breast cancer patients. Sera was analyzed for the presence of HER-2/neu-specific antibodies with a capture enzyme-linked immunosorbent assay (ELISA) and verified by Western blot. Sera from 200 volunteer blood donors was used as a control population. RESULTS The presence of antibodies to HER-2/neu correlated with the presence of breast cancer. HER-2/neu antibodies at titers of > or = 1:100 were detected in 12 of 107 (11%) breast cancer patients versus none of 200 (0%) normal controls (P < .01). The presence of antibodies to HER-2/neu also correlated to overexpression of HER-2/neu protein in the patients primary tumor. Nine of 44 (20%) patients with HER-2/neu-positive tumors had HER-2/neu-specific antibodies, whereas three of 63 (5%) patients with HER-2/neu-negative tumors had antibodies (P = .03). The antibody responses could be substantial. Titers of greater than 1:5,000 were detected in five of 107 (5%). CONCLUSION The presence of HER-2/neu antibodies in breast cancer patients and the correlation with HER-2/neu-positive cancer implies that immunity to HER-2/neu develops as a result of exposure of patients to HER-2/neu protein expressed by their own cancer. These findings should stimulate further studies to develop the detection of immunity to oncogenic proteins as tumor markers, as well as the development and testing of vaccine strategies to induce and augment immunity to HER-2/neu for the treatment of breast cancer or prevention of recurrent disease.
Journal of Immunotherapy | 2002
Ulrich Keilholz; Jeffrey S. Weber; James H. Finke; Dmitry I. Gabrilovich; W. Martin Kast; Mary L. Disis; John M. Kirkwood; Carmen Scheibenbogen; Jeff Schlom; Vernon C. Maino; H. Kim Lyerly; Peter P. Lee; Walter J. Storkus; Franceso Marincola; Alexandra Worobec; Michael B. Atkins
The Society for Biological Therapy held a Workshop last fall devoted to immune monitoring for cancer immunotherapy trials. Participants included members of the academic and pharmaceutical communities as well as the National Cancer Institute and the Food and Drug Administration. Discussion focused on the relative merits and appropriate use of various immune monitoring tools. Six breakout groups dealt with assays of T-cell function, serologic and proliferation assays to assess B cell and T helper cell activity, and enzyme-linked immunospot assay, tetramer, cytokine flow cytometry, and reverse transcription polymerase chain reaction assays of T-cell immunity. General conclusions included: (1) future vaccine studies should be designed to determine whether T-cell dysfunction (tumor-specific and nonspecific) correlated with clinical outcome; (2) tetramer-based assays yield quantitative but not functional data (3) enzyme-linked immunospot assays have the lowest limit of detection (4) cytokine flow cytometry have a higher limit of detection than enzyme-linked immunospot assay, but offer the advantages of speed and the ability to identify subsets of reactive cells; (5) antibody tests are simple and accurate and should be incorporated to a greater extent in monitoring plans; (6) proliferation assays are imprecise and should not be emphasized in future studies; (7) the reverse transcription polymerase chain reaction assay is a promising research approach that is not ready for widespread application; and (8) there is a critical need to validate these assays as surrogates for vaccine potency and clinical effect. Current data and opinion support the use of a functional assay like the enzyme-linked immunospot assay or cytokine flow cytometry in combination with a quantitative assay like tetramers for immune monitoring. At present, assays appear to be most useful as measures of vaccine potency. Careful immune monitoring in association with larger scale clinical trials ultimately may enable the correlation of monitoring results with clinical benefit.
ACS Nano | 2012
Forrest M. Kievit; Zachary R. Stephen; Omid Veiseh; Hamed Arami; Tingzhong Wang; Vy P. Lai; James O. Park; Richard G. Ellenbogen; Mary L. Disis; Miqin Zhang
Breast cancer remains one of the most prevalent and lethal malignancies in women. The inability to diagnose small volume metastases early has limited effective treatment of stage 4 breast cancer. Here we report the rational development and use of a multifunctional superparamagnetic iron oxide nanoparticle (SPION) for targeting metastatic breast cancer in a transgenic mouse model and imaging with magnetic resonance (MR). SPIONs coated with a copolymer of chitosan and polyethylene glycol (PEG) were labeled with a fluorescent dye for optical detection and conjugated with a monoclonal antibody against the neu receptor (NP-neu). SPIONs labeled with mouse IgG were used as a nontargeting control (NP-IgG). These SPIONs had desirable physiochemical properties for in vivo applications such as near neutral zeta potential and hydrodynamic size around 40 nm and were highly stable in serum containing medium. Only NP-neu showed high uptake in neu expressing mouse mammary carcinoma (MMC) cells which was reversed by competing free neu antibody, indicating their specificity to the neu antigen. In vivo, NP-neu was able to tag primary breast tumors and significantly, only NP-neu bound to spontaneous liver, lung, and bone marrow metastases in a transgenic mouse model of metastatic breast cancer, highlighting the necessity of targeting for delivery to metastatic disease. The SPIONs provided significant contrast enhancement in MR images of primary breast tumors; thus, they have the potential for MRI detection of micrometastases and provide an excellent platform for further development of an efficient metastatic breast cancer therapy.
Journal of Clinical Oncology | 2015
Jeffrey S. Weber; James Chih-Hsin Yang; Michael B. Atkins; Mary L. Disis
The toxicities of immunotherapy for cancer are as diverse as the type of treatments that have been devised. These range from cytokine therapies that induce capillary leakage to vaccines associated with low levels of autoimmunity to cell therapies that can induce damaging cross-reactivity with normal tissue to checkpoint protein inhibitors that induce immune-related adverse events that are autoinflammatory in nature. The thread that ties these toxicities together is their mechanism-based immune nature and the T-cell-mediated adverse events seen. The basis for the majority of these adverse events is a hyperactivated T-cell response with reactivity directed against normal tissue, resulting in the generation of high levels of CD4 T-helper cell cytokines or increased migration of cytolytic CD8 T cells within normal tissues. The T-cell immune response is not tissue specific and may reflect a diffuse expansion of the T-cell repertoire that induces cross-reactivity with normal tissue, effectively breaking tolerance that is active with cytokines, vaccines, and checkpoint protein inhibitors and passive in the case of adoptive cell therapy. Cytokines seem to generate diffuse and nonspecific T-cell reactivity, whereas checkpoint protein inhibition, vaccines, and adoptive cell therapy seem to activate more specific T cells that interact directly with normal tissues, potentially causing specific organ damage. In this review, we summarize the toxicities that are unique to immunotherapies, emphasizing the need to familiarize the oncology practitioner with the spectrum of adverse events seen with newly approved and emerging modalities.
Journal of Clinical Oncology | 2009
Mary L. Disis; Danelle R. Wallace; Theodore A. Gooley; Yushe Dang; Meredith Slota; Hailing Lu; Andrew L. Coveler; Jennifer Childs; Doreen Higgins; Patricia A. Fintak; Corazon dela Rosa; Kathleen Tietje; John S. Link; James Waisman; Lupe G. Salazar
PURPOSE The primary objectives of this phase I/II study were to evaluate the safety and immunogenicity of combination therapy consisting of concurrent trastuzumab and human epidermal growth factor receptor 2 (HER2)/neu-specific vaccination in patients with HER2/neu-overexpressing metastatic breast cancer. PATIENTS AND METHODS Twenty-two patients with stage IV HER2/neu-positive breast cancer receiving trastuzumab therapy were vaccinated with an HER2/neu T-helper peptide-based vaccine. Toxicity was graded according to National Cancer Institute criteria, and antigen specific T-cell immunity was assessed by interferon gamma enzyme-linked immunosorbent spot assay. Data on progression-free and overall survival were collected. RESULTS Concurrent trastuzumab and HER2/neu vaccinations were well tolerated, with 15% of patients experiencing an asymptomatic decline in left ventricular ejection fraction below the normal range during combination therapy. Although many patients had pre-existing immunity specific for HER2/neu and other breast cancer antigens while treated with trastuzumab alone, that immunity could be significantly boosted and maintained with vaccination. Epitope spreading within HER2/neu and to additional tumor-related proteins was stimulated by immunization, and the magnitude of the T-cell response generated was significantly inversely correlated with serum transforming growth factor beta levels. At a median follow-up of 36 months from the first vaccine, the median overall survival in the study population has not been reached. CONCLUSION Combination therapy with trastuzumab and a HER2/neu vaccine is associated with minimal toxicity and results in prolonged, robust, antigen-specific immune responses in treated patients.
Journal of Clinical Oncology | 2011
Kelly G Paulson; Jayasri G. Iyer; Andrew R. Tegeder; Renee Thibodeau; Janell Schelter; Shinichi Koba; David Schrama; William T. Simonson; Bianca D. Lemos; David R. Byrd; David M. Koelle; Denise A. Galloway; J. Helen Leonard; Margaret M. Madeleine; Zsolt B. Argenyi; Mary L. Disis; Juergen C. Becker; Michele A. Cleary; Paul Nghiem
PURPOSE Merkel cell carcinoma (MCC) is a polyomavirus-associated skin cancer that is frequently lethal and lacks established prognostic biomarkers. This study sought to identify biomarkers that improve prognostic accuracy and provide insight into MCC biology. PATIENTS AND METHODS Gene expression profiles of 35 MCC tumors were clustered based on prognosis. The cluster of genes overexpressed in good-prognosis tumors was tested for biologic process enrichment. Relevant mRNA expression differences were confirmed by quantitative polymerase chain reaction and immunohistochemistry. An independent set of 146 nonoverlapping MCC tumors (median follow-up, 25 months among 116 living patients) was employed for biomarker validation. Univariate and multivariate Cox regression analyses were performed. RESULTS Immune response gene signatures were prominent in patients with good prognoses. In particular, genes associated with cytotoxic CD8+ lymphocytes were overexpressed in tumors from patients with favorable prognoses. In the independent validation set, cases with robust intratumoral CD8+ lymphocyte infiltration had improved outcomes (100% MCC-specific survival, n = 26) compared with instances characterized by sparse infiltration (60% survival, n = 120). Only stage and intratumoral CD8 infiltration (but not age, sex, or CD8+ lymphocytes localized to the tumor-stroma interface) were significant in both univariate and multivariate Cox regression analyses. Notably, traditional histologic identification of tumor-infiltrating lymphocytes was not a significant independent predictor of survival. CONCLUSION Intratumoral CD8+ lymphocyte infiltration can be readily assessed on paraffin-embedded tissue, is independently associated with improved MCC-specific survival, and therefore, may provide prognostic information that enhances established MCC staging protocols.
Journal of Clinical Oncology | 2009
Leisha A. Emens; Justin M. Asquith; James M. Leatherman; Barry Kobrin; Silvia Petrik; Marina Laiko; Joy Levi; M. M. Daphtary; Barbara Biedrzycki; Antonio C. Wolff; Vered Stearns; Mary L. Disis; Xiaobu Ye; Steven Piantadosi; John H. Fetting; Nancy E. Davidson; Elizabeth M. Jaffee
PURPOSE Granulocyte-macrophage colony-stimulating factor (GM-CSF) -secreting tumor vaccines have demonstrated bioactivity but may be limited by disease burdens and immune tolerance. We tested the hypothesis that cyclophosphamide (CY) and doxorubicin (DOX) can enhance vaccine-induced immunity in patients with breast cancer. PATIENTS AND METHODS We conducted a 3 x 3 factorial (response surface) dose-ranging study of CY, DOX, and an HER2-positive, allogeneic, GM-CSF-secreting tumor vaccine in 28 patients with metastatic breast cancer. Patients received three monthly immunizations, with a boost 6 to 8 months from study entry. Primary objectives included safety and determination of the chemotherapy doses that maximize HER2-specific immunity. RESULTS Twenty-eight patients received at least one immunization, and 16 patients received four immunizations. No dose-limiting toxicities were observed. HER2-specific delayed-type hypersensitivity developed in most patients who received vaccine alone or with 200 mg/m(2) CY. HER2-specific antibody responses were enhanced by 200 mg/m(2) CY and 35 mg/m(2) DOX, but higher CY doses suppressed immunity. Analyses revealed that CY at 200 mg/m(2) and DOX at 35 mg/m(2) is the combination that produced the highest antibody responses. CONCLUSION First, immunotherapy with an allogeneic, HER2-positive, GM-CSF-secreting breast tumor vaccine alone or with CY and DOX is safe and induces HER2-specific immunity in patients with metastatic breast cancer. Second, the immunomodulatory activity of low-dose CY has a narrow therapeutic window, with an optimal dose not exceeding 200 mg/m(2). Third, factorial designs provide an opportunity to identify the most active combination of interacting drugs in patients. Further investigation of the impact of chemotherapy on vaccine-induced immunity is warranted.