Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen J. Guter is active.

Publication


Featured researches published by Stephen J. Guter.


American Journal of Human Genetics | 1998

Linkage-Disequilibrium Mapping of Autistic Disorder, with 15q11-13 Markers

Edwin H. Cook; Rachel Y. Courchesne; Nancy J. Cox; Catherine Lord; David Gonen; Stephen J. Guter; Alan J. Lincoln; Kristi Nix; Richard H. Haas; Bennett L. Leventhal; Eric Courchesne

Autistic disorder is a complex genetic disease. Because of previous reports of individuals with autistic disorder with duplications of the Prader-Willi/Angelman syndrome critical region, we screened several markers across the 15q11-13 region, for linkage disequilibrium. One hundred forty families, consisting predominantly of a child with autistic disorder and both parents, were studied. Genotyping was performed by use of multiplex PCR and capillary electrophoresis. Two children were identified who had interstitial chromosome 15 duplications and were excluded from further linkage-disequilibrium analysis. Use of the multiallelic transmission-disequilibrium test (MTDT), for nine loci on 15q11-13, revealed linkage disequilibrium between autistic disorder and a marker in the gamma-aminobutyric acidA receptor subunit gene, GABRB3 155CA-2 (MTDT 28.63, 10 df, P=.0014). No evidence was found for parent-of-origin effects on allelic transmission. The convergence of GABRB3 as a positional and functional candidate along with the linkage-disequilibrium data suggests the need for further investigation of the role of GABRB3 or adjacent genes in autistic disorder.


Archives of General Psychiatry | 2012

A Multisite Study of the Clinical Diagnosis of Different Autism Spectrum Disorders

Catherine Lord; Eva Petkova; Vanessa Hus; Weijin Gan; Feihan Lu; Donna M. Martin; Opal Ousley; Lisa Guy; Raphael Bernier; Jennifer Gerdts; Molly Algermissen; Agnes H. Whitaker; James S. Sutcliffe; Zachary Warren; Ami Klin; Celine Saulnier; Ellen Hanson; Rachel Hundley; Judith Piggot; Eric Fombonne; Mandy Steiman; Judith H. Miles; Stephen M. Kanne; Robin P. Goin-Kochel; Sarika U. Peters; Edwin H. Cook; Stephen J. Guter; Jennifer Tjernagel; Lee Anne Green-Snyder; Somer L. Bishop

CONTEXT Best-estimate clinical diagnoses of specific autism spectrum disorders (autistic disorder, pervasive developmental disorder-not otherwise specified, and Asperger syndrome) have been used as the diagnostic gold standard, even when information from standardized instruments is available. OBJECTIVE To determine whether the relationships between behavioral phenotypes and clinical diagnoses of different autism spectrum disorders vary across 12 university-based sites. DESIGN Multisite observational study collecting clinical phenotype data (diagnostic, developmental, and demographic) for genetic research. Classification trees were used to identify characteristics that predicted diagnosis across and within sites. SETTING Participants were recruited through 12 university-based autism service providers into a genetic study of autism. PARTICIPANTS A total of 2102 probands (1814 male probands) between 4 and 18 years of age (mean [SD] age, 8.93 [3.5] years) who met autism spectrum criteria on the Autism Diagnostic Interview-Revised and the Autism Diagnostic Observation Schedule and who had a clinical diagnosis of an autism spectrum disorder. MAIN OUTCOME MEASURE Best-estimate clinical diagnoses predicted by standardized scores from diagnostic, cognitive, and behavioral measures. RESULTS Although distributions of scores on standardized measures were similar across sites, significant site differences emerged in best-estimate clinical diagnoses of specific autism spectrum disorders. Relationships between clinical diagnoses and standardized scores, particularly verbal IQ, language level, and core diagnostic features, varied across sites in weighting of information and cutoffs. CONCLUSIONS Clinical distinctions among categorical diagnostic subtypes of autism spectrum disorders were not reliable even across sites with well-documented fidelity using standardized diagnostic instruments. Results support the move from existing subgroupings of autism spectrum disorders to dimensional descriptions of core features of social affect and fixated, repetitive behaviors, together with characteristics such as language level and cognitive function.


Molecular Psychiatry | 2002

Transmission disequilibrium mapping at the serotonin transporter gene (SLC6A4) region in autistic disorder.

Soo-Jeong Kim; Nancy J. Cox; Rachel Y. Courchesne; Catherine Lord; Christina Corsello; Natacha Akshoomoff; Stephen J. Guter; Bennett L. Leventhal; Eric Courchesne; Edwin H. Cook

The serotonin transporter gene (SLC6A4, MIM 182138) is a candidate gene in autistic disorder based on neurochemical, neuroendocrine studies and the efficacy of potent serotonin transporter inhibitors in reducing ritualistic behaviors and related aggression. An insertion/deletion polymorphism (5-HTTLPR) in the promoter region and a variable number of tandem repeat polymorphism (VNTR) in the second intron, were previously identified and suggested to modulate transcription. Six previous family-based association studies of SLC6A4 in autistic disorder have been conducted, with four studies showing nominally significant transmission disequilibrium and two studies with no evidence of nominally significant transmission disequilibrium. In the present study, TDT was conducted in 81 new trios. A previous finding of transmission disequilibrium between a haplotype consisting of the 5-HTTLPR and intron 2 VNTR was replicated in this study, but not preferential transmission of 5-HTTLPR as an independent marker. Because of inconsistent transmission of 5-HTTLPR across studies, SLC6A4 and its flanking regions were sequenced in 10 probands, followed by typing of 20 single nucleotide polymorphisms (SNPs) and seven simple sequence repeat (SSR) polymorphisms in 115 autism trios. When individual markers were analyzed by TDT, seven SNP markers and four SSR markers (six SNPs, 5-HTTLPR and the second intron VNTR from promoter 1A through intron 2 of SLC6A4, one SSR from intron 7 of SLC6A4, one SNP from the bleomycin hydrolase gene (BLMH, MIM 602403) and one SSR telomeric to BLMH) showed nominally significant evidence of transmission disequilibrium. Four markers showed stronger evidence of transmission disequilibrium (TDTmax P = 0.0005) than 5-HTTLPR.


Science Translational Medicine | 2010

Disruption at the PTCHD1 locus on Xp22.11 in autism spectrum disorder and intellectual disability

Abdul Noor; Annabel Whibley; Christian R. Marshall; Peter J. Gianakopoulos; Amélie Piton; Andrew R. Carson; Marija Orlic-Milacic; Anath C. Lionel; Daisuke Sato; Dalila Pinto; Irene Drmic; Carolyn Noakes; Lili Senman; Xiaoyun Zhang; Rong Mo; Julie Gauthier; Jennifer Crosbie; Alistair T. Pagnamenta; Jeffrey Munson; Annette Estes; Andreas Fiebig; Andre Franke; Stefan Schreiber; Alexandre F.R. Stewart; Robert Roberts; Ruth McPherson; Stephen J. Guter; Edwin H. Cook; Geraldine Dawson; Gerard D. Schellenberg

Mutations of the X-linked gene PTCHD1 are associated with autism spectrum disorders and intellectual disability. A Patch in the Fabric of Autism What causes autism? This disabling disorder is characterized by severe language and social impairment and is now included under the umbrella term “autism spectrum disorder” (ASD), which also includes milder deficits in communication and social development. Numerous theories have been advanced as to its causes. These have ranged from discredited concepts—“refrigerator” mothers and vaccines—to the modern idea of gene-environment interactions. Although no one gene simply explains the predisposition of patients for ASD, these disorders are wellknown to have a strong genetic component. Here, Noor et al. report the results of genetic analysis in thousands of patients and control subjects: Mutations at the PTCHD1 (patched-related gene) locus are associated with the inheritance of ASD and with intellectual disability in a small fraction of cases. In this study, the authors analyzed the PTCHD1 gene from 1896 patients with ASD and 246 with intellectual disability, and compared these to more than 10,000 control individuals, and found mutations in various parts of this gene in 25 affected individuals in 20 different families, but not in any of the controls. Some patients had large deletions, in one case spanning the entire gene, and in others the culprit was a missense mutation. A result of this gene’s location on the X chromosome, the affected patients were almost all male, and most had unaffected mothers and other female relatives. The authors also present evidence that the PTCHD1 gene may be part of the Hedgehog signaling pathway, which is important in embryonic development. Autism and intellectual disability are not straightforward disorders that can be attributed to mutations in a single gene. Even when candidate genes such as PTCHD1 are known, differences in the gene sequence do not perfectly correlate with phenotype, because there are many as yet undefined additional genes and environmental influences that dictate the ultimate characteristics of the person. Identifying some of these genes, as Noor et al. have done in this study, allows a better understanding of the disorder and the development of ways to compensate for its disabilities. Autism is a common neurodevelopmental disorder with a complex mode of inheritance. It is one of the most highly heritable of the complex disorders, although the underlying genetic factors remain largely unknown. Here, we report mutations in the X-chromosome PTCHD1 (patched-related) gene in seven families with autism spectrum disorder (ASD) and in three families with intellectual disability. A 167-kilobase microdeletion spanning exon 1 was found in two brothers, one with ASD and the other with a learning disability and ASD features; a 90-kilobase microdeletion spanning the entire gene was found in three males with intellectual disability in a second family. In 900 probands with ASD and 208 male probands with intellectual disability, we identified seven different missense changes (in eight male probands) that were inherited from unaffected mothers and not found in controls. Two of the ASD individuals with missense changes also carried a de novo deletion at another ASD susceptibility locus (DPYD and DPP6), suggesting complex genetic contributions. In additional males with ASD, we identified deletions in the 5′ flanking region of PTCHD1 that disrupted a complex noncoding RNA and potential regulatory elements; equivalent changes were not found in male control individuals. Thus, our systematic screen of PTCHD1 and its 5′ flanking regions suggests that this locus is involved in ~1% of individuals with ASD and intellectual disability.


Psychological Medicine | 2009

Impaired inhibitory control is associated with higher-order repetitive behaviors in autism spectrum disorders

Matthew W. Mosconi; M. Kay; Anna Maria D'Cruz; A. Seidenfeld; Stephen J. Guter; Lisa D. Stanford; John A. Sweeney

BACKGROUND Impairments in executive cognitive control, including a reduced ability to inhibit prepotent responses, have been reported in autism spectrum disorders (ASD). These deficits may underlie patterns of repetitive behaviors associated with the disorder. METHOD Eighteen individuals with ASD and 15 age- and IQ-matched healthy individuals performed an antisaccade task and a visually guided saccade control task, each with gap and overlap conditions. Measures of repetitive behaviors were obtained using the Autism Diagnostic Inventory-Revised (ADI-R) and examined in relation to neurocognitive task performance. RESULTS Individuals with an ASD showed increased rates of prosaccade errors (failures to inhibit prepotent responses) on the antisaccade task regardless of task condition (gap/overlap). Prosaccade error rates were associated with the level of higher-order (e.g. compulsions, preoccupations) but not sensorimotor repetitive behaviors in ASD. CONCLUSIONS Neurocognitive disturbances in voluntary behavioral control suggest that alterations in frontostriatal systems contribute to higher-order repetitive behaviors in ASD.


Archives of General Psychiatry | 2010

Neurobehavioral Abnormalities in First-Degree Relatives of Individuals With Autism

Matthew W. Mosconi; Margaret Kay; Anna Maria D'Cruz; Stephen J. Guter; Kush Kapur; Carol Macmillan; Lisa D. Stanford; John A. Sweeney

CONTEXT Studying sensorimotor and neurocognitive impairments in unaffected family members of individuals with autism may help identify familial pathophysiological mechanisms associated with the disorder. OBJECTIVE To determine whether atypical sensorimotor or neurocognitive characteristics associated with autism are present in first-degree relatives of individuals with autism. DESIGN Case-control comparison of neurobehavioral functions. SETTING University medical center. PARTICIPANTS Fifty-seven first-degree relatives of individuals with autism and 40 age-, sex-, and IQ-matched healthy control participants (aged 8-54 years). MAIN OUTCOME MEASURES Oculomotor tests of sensorimotor responses (saccades and smooth pursuit); procedural learning and response inhibition; neuropsychological tests of motor, memory, and executive functions; and psychological measures of social behavior, communication skills, and obsessive-compulsive behaviors. RESULTS On eye movement testing, family members demonstrated saccadic hypometria, reduced steady-state pursuit gain, and a higher rate of voluntary response inhibition errors relative to controls. They also showed lateralized deficits in procedural learning and open-loop pursuit gain (initial 100 milliseconds of pursuit) and increased variability in the accuracy of large-amplitude saccades that were confined to rightward movements. In neuropsychological studies, only executive functions were impaired relative to those of controls. Family members reported more communication abnormalities and obsessive-compulsive behaviors than controls. Deficits across oculomotor, neuropsychological, and psychological domains were relatively independent from one another. CONCLUSIONS Family members of individuals with autism demonstrate oculomotor abnormalities implicating pontocerebellar and frontostriatal circuits and left-lateralized alterations of frontotemporal circuitry and striatum. The left-lateralized alterations have not been identified in other neuropsychiatric disorders and are of interest given atypical brain lateralization and language development associated with the disorder. Similar oculomotor deficits have been reported in individuals with autism, suggesting that they may be familial and useful for studies of neurophysiological and genetic mechanisms in autism.


Nature Communications | 2014

The impact of the metabotropic glutamate receptor and other gene family interaction networks on autism

Dexter Hadley; Zhi Liang Wu; Charlly Kao; Akshata Kini; Alisha Mohamed-Hadley; Kelly Thomas; Lyam Vazquez; Haijun Qiu; Frank D. Mentch; Renata Pellegrino; Cecilia Kim; John J. Connolly; Joseph T. Glessner; Hakon Hakonarson; Dalila Pinto; Alison Merikangas; Lambertus Klei; Jacob Vorstman; Ann Thompson; Regina Regan; Alistair T. Pagnamenta; Bárbara Oliveira; Tiago R. Magalhães; John R. Gilbert; Eftichia Duketis; Maretha V. de Jonge; Michael L. Cuccaro; Catarina Correia; Judith Conroy; Inês C. Conceiça

Although multiple reports show that defective genetic networks underlie the aetiology of autism, few have translated into pharmacotherapeutic opportunities. Since drugs compete with endogenous small molecules for protein binding, many successful drugs target large gene families with multiple drug binding sites. Here we search for defective gene family interaction networks (GFINs) in 6,742 patients with the ASDs relative to 12,544 neurologically normal controls, to find potentially druggable genetic targets. We find significant enrichment of structural defects (P≤2.40E−09, 1.8-fold enrichment) in the metabotropic glutamate receptor (GRM) GFIN, previously observed to impact attention deficit hyperactivity disorder (ADHD) and schizophrenia. Also, the MXD-MYC-MAX network of genes, previously implicated in cancer, is significantly enriched (P≤3.83E−23, 2.5-fold enrichment), as is the calmodulin 1 (CALM1) gene interaction network (P≤4.16E−04, 14.4-fold enrichment), which regulates voltage-independent calcium-activated action potentials at the neuronal synapse. We find that multiple defective gene family interactions underlie autism, presenting new translational opportunities to explore for therapeutic interventions.


Molecular Autism | 2011

A quantitative association study of SLC25A12 and restricted repetitive behavior traits in autism spectrum disorders.

Soo Jeong Kim; Raquel M. Silva; Cindi G. Flores; Suma Jacob; Stephen J. Guter; Gregory Valcante; Annette M. Zaytoun; Edwin H. Cook

BackgroundSLC25A12 was previously identified by a linkage-directed association analysis in autism. In this study, we investigated the relationship between three SLC25A12 single nucleotide polymorphisms (SNPs) (rs2056202, rs908670 and rs2292813) and restricted repetitive behavior (RRB) traits in autism spectrum disorders (ASDs), based on a positive correlation between the G allele of rs2056202 and an RRB subdomain score on the Autism Diagnostic Interview-Revised (ADI-R).MethodsWe used the Repetitive Behavior Scale-Revised (RBS-R) as a quantitative RRB measure, and conducted linear regression analyses for individual SNPs and a previously identified haplotype (rs2056202-rs2292813). We examined associations in our University of Illinois at Chicago-University of Florida (UIC-UF) sample (179 unrelated individuals with an ASD), and then attempted to replicate our findings in the Simons Simplex Collection (SSC) sample (720 ASD families).ResultsIn the UIC-UF sample, three RBS-R scores (ritualistic, sameness, sum) had positive associations with the A allele of rs2292813 (p = 0.006-0.012) and with the rs2056202-rs2292813 haplotype (omnibus test, p = 0.025-0.040). The SSC sample had positive associations between the A allele of rs2056202 and four RBS-R scores (stereotyped, sameness, restricted, sum) (p = 0.006-0.010), between the A allele of rs908670 and three RBS-R scores (stereotyped, self-injurious, sum) (p = 0.003-0.015), and between the rs2056202-rs2292813 haplotype and six RBS-R scores (stereotyped, self-injurious, compulsive, sameness, restricted, sum)(omnibus test, p = 0.002-0.028). Taken together, the A alleles of rs2056202 and rs2292813 were consistently and positively associated with RRB traits in both the UIC-UF and SSC samples, but the most significant SNP with phenotype association varied in each dataset.ConclusionsThis study confirmed an association between SLC25A12 and RRB traits in ASDs, but the direction of the association was different from that in the initial study. This could be due to the examined SLC25A12 SNPs being in linkage disequilibrium with another risk allele, and/or genetic/phenotypic heterogeneity of the ASD samples across studies.


Frontiers in Neuroscience | 2016

ASD and genetic associations with receptors for oxytocin and vasopressin-AVPR1A, AVPR1B, and OXTR

Sunday M. Francis; Soo Jeong Kim; Emily Kistner-Griffin; Stephen J. Guter; Edwin H. Cook; Suma Jacob

Background: There are limited treatments available for autism spectrum disorder (ASD). Studies have reported significant associations between the receptor genes of oxytocin (OT) and vasopressin (AVP) and ASD diagnosis, as well as ASD-related phenotypes. Researchers have also found the manipulation of these systems affects social and repetitive behaviors, core characteristics of ASD. Consequently, research involving the oxytocin/vasopressin pathways as intervention targets has increased. Therefore, further examination into the relationship between these neuropeptides and ASD was undertaken. In this study, we examined associations between variants in the receptor genes of vasopressin (AVPR1A, AVPR1B), oxytocin (OXTR), and ASD diagnosis along with related subphenotypes. Methods: Probands were assessed using Autism Diagnostic Interview-Revised, Autism Diagnostic Observation Schedule, and clinical DSM-IV-TR criteria. Single nucleotide polymorphisms (SNPs) in AVPR1B and OXTR, and microsatellites in AVPR1A were genotyped in ~200 families with a proband with ASD. Family-based association testing (FBAT) was utilized to determine associations between variants and ASD. Haplotypes composed of OXTR SNPs (i.e., rs53576-rs2254298-rs2268493) were also analyzed due to previously published associations. Results: Using the additive inheritance model in FBAT we found associations between AVPR1B SNPs (rs28632197, p = 0.005, rs35369693, p = 0.025) and diagnosis. As in other studies, OXTR rs2268493 (p = 0.050) was associated with diagnosis. rs2268493 was also associated with ASD subphenotypes of social withdrawal (p = 0.013) and Insistence on Sameness (p = 0.039). Further analyses demonstrated that the haplotype, rs2254298–rs2268493 was found to be significantly associated with diagnosis (A-T; p = 0.026). FBAT was also used to analyze AVPR1A microsatellites (RS1 and RS3). Both length variants were found to be associated with restrictive, repetitive behaviors, but not overall diagnosis. Correction for multiple comparisons was performed for SNPs tested in each gene region, only AVPR1B SNPs remained significantly associated with ASD diagnosis. Conclusions: Autism is a heterogeneous disorder with many genes and pathways that contribute to its development. SNPs and microsatellites in the receptor genes of OT and AVP are associated with ASD diagnosis and measures of social behavior as well as restricted repetitive behaviors. We reported a novel association with ASD and AVPR1B SNPs. Understanding of genotype-phenotype relationships may be helpful in the development of pharmacological interventions for the OT/AVP system.


Frontiers in Neuroscience | 2016

Variants in Adjacent Oxytocin/Vasopressin Gene Region and Associations with ASD Diagnosis and Other Autism Related Endophenotypes

Sunday M. Francis; Emily Kistner-Griffin; Zhongyu Yan; Stephen J. Guter; Edwin H. Cook; Suma Jacob

Background: There has been increasing interest in oxytocin (peptide: OT, gene: OXT) as a treatment pathway for neurodevelopmental disorders such as Autism Spectrum Disorder (ASD). Neurodevelopmental disorders affect functional, social, and intellectual abilities. With advances in molecular biology, research has connected multiple gene regions to the clinical presentation of ASD. Studies have also shown that the neuropeptide hormones OT and arginine vasopressin (AVP) influence mammalian social and territorial behaviors and may have treatment potential for neurodevelopmental disorders. Published data examining molecular and phenotypic variation in ASD, such as cognitive abilities, are limited. Since most studies have focused on the receptors in the OT-AVP system, we investigated genetic variation within peptide genes for association with phenotypic ASD features that help identify subgroups within the spectrum. Methods: In this study, TDT analysis was carried out utilizing FBAT in 207 probands (156 trios) and a European Ancestry (EA) subsample (108 trios).The evolutionarily related and adjacent genes of OXT and AVP were studied for associations between the tagged single nucleotide polymorphisms and ASD diagnosis, social abilities, restrictive and repetitive behaviors, and IQ for cognitive abilities. Additionally, relationships with whole blood serotonin (WB5HT) were explored because of the developmental relationships connecting plasma levels of OT and WB5HT within ASD. Results: Results indicate significant association between OXT rs6084258 (p = 0.001) and ASD. Associations with several endophenotypes were also noted: OXT rs6133010 was associated with IQ (full scale IQ, p = 0.008; nonverbal IQ, p = 0.010, verbal IQ, p = 0.006); and OXT rs4813625 and OXT rs877172 were associated with WB5HT levels (EA, p = 0.027 and p = 0.033, respectively). Additionally, we measured plasma OT (pOT) levels in a subsample (N = 54). Results show the three polymorphisms, OXT rs6084258, OXT rs11697250, and OXT rs877172, have significant association with pOT (EA, p = 0.011, p = 0.010, and p = 0.002, respectively). Conclusions: These findings suggest that SNPs near OXT and AVP are associated with diagnosis of ASD, social behaviors, restricted and repetitive behaviors, IQ, pOT, and WB5HT. Future studies need to replicate these findings and examine gene-interactions in other neurodevelopmental disorders. Mechanisms of action may influence early social and cognitive development that may or may not be limited to ASD diagnosis.

Collaboration


Dive into the Stephen J. Guter's collaboration.

Top Co-Authors

Avatar

Edwin H. Cook

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Suma Jacob

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dalila Pinto

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Fedra Najjar

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge