Stephen J. Temple
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephen J. Temple.
Plant Physiology | 2001
Mesfin Tesfaye; Stephen J. Temple; Deborah L. Allan; Carroll P. Vance; Deborah A. Samac
Al toxicity is a severe impediment to production of many crops in acid soil. Toxicity can be reduced through lime application to raise soil pH, however this amendment does not remedy subsoil acidity, and liming may not always be practical or cost-effective. Addition of organic acids to plant nutrient solutions alleviates phytotoxic Al effects, presumably by chelating Al and rendering it less toxic. In an effort to increase organic acid secretion and thereby enhance Al tolerance in alfalfa (Medicago sativa), we produced transgenic plants using nodule-enhanced forms of malate dehydrogenase and phosphoenolpyruvate carboxylase cDNAs under the control of the constitutive cauliflower mosaic virus 35S promoter. We report that a 1.6-fold increase in malate dehydrogenase enzyme specific activity in root tips of selected transgenic alfalfa led to a 4.2-fold increase in root concentration as well as a 7.1-fold increase in root exudation of citrate, oxalate, malate, succinate, and acetate compared with untransformed control alfalfa plants. Overexpression of phosphoenolpyruvate carboxylase enzyme specific activity in transgenic alfalfa did not result in increased root exudation of organic acids. The degree of Al tolerance by transformed plants in hydroponic solutions and in naturally acid soil corresponded with their patterns of organic acid exudation and supports the concept that enhancing organic acid synthesis in plants may be an effective strategy to cope with soil acidity and Al toxicity.
Trends in Plant Science | 1998
Stephen J. Temple; Carroll P. Vance; J. Stephen Gantt
The assimilation of ammonia by a wide variety of organisms is the primary route for the introduction of nitrogen into the biosphere. The assimilatory enzymes glutamine synthetase and glutamate synthase catalyze reactions that convert α-ketoglutarate and ammonia to glutamate, which is then used in a wide variety of biosynthetic reactions. These enzymes also play a major role in the reassimilation of ammonia derived from photorespiration in C 3 plants. Recent biochemical, molecular and genetic studies are leading to a better understanding of the factors that determine the activity and function of glutamate synthase.
Plant and Soil | 2003
Claudia Uhde-Stone; Glena Gilbert; Jane M. Johnson; Ralph Litjens; Kelly E. Zinn; Stephen J. Temple; Carroll P. Vance; Deborah L. Allan
White lupin (Lupinus albus L.) acclimates to phosphorus deficiency (−P) by the development of short, densely clustered lateral roots called proteoid (or cluster) roots. These specialized plant organs display increased exudation of citric and malic acid. The enhanced exudation of organic acids from P stressed white lupin roots is accompanied by increased in vitro phosphoenolpyruvate carboxylase (PEPC) and malate dehydrogenase (MDH) activity. Here we report the cloning of full-length white lupin PEPC and MDH cDNAs. RNA blot analysis indicates enhanced expression of these genes in −P proteoid roots, placing higher gene expression at the site of organic acid exudation. Correspondingly, macroarray analysis of about 1250 ESTs (expressed sequence tags) revealed induced expression of genes involved in organic acid metabolism in −P proteoid roots. In situ hybridization revealed that PEPC and MDH were both expressed in the cortex of emerging and mature proteoid rootlets. A C3 PEPC protein was partially purified from proteoid roots of P deficient white lupin. Native and subunit Mr were determined to be 440 kD and 110 kD, respectively. Citrate and malate were effective inhibitors of in vitro PEPC activity at pH 7. Addition of ATP partially relieved inhibition of PEPC by malate but had little effect on citrate inhibition. Taken together, the results presented here suggest that acclimation of white lupin to low P involves modified expression of plant genes involved in carbon metabolism.
Transgenic Research | 2004
Deborah A. Samac; Mesfin Tesfaye; Melinda R. Dornbusch; Purev Saruul; Stephen J. Temple
The activity of constitutive promoters was compared in transgenic alfalfa plants using two marker genes. Three promoters, the 35S promoter from cauliflower mosaic virus (CaMV), the cassava vein mosaic virus (CsVMV) promoter, and the sugarcane bacilliform badnavirus (ScBV) promoter were each fused to the β-glucuronidase (gusA) gene. The highest GUS enzyme activity was obtained using the CsVMV promoter and all alfalfa cells assayed by in situ staining had high levels of enzyme activity. The 35S promoter was expressed in leaves, roots, and stems at moderate levels, but the promoter was not active in stem pith cells, root cortical cells, or in the symbiotic zones of nodules. The ScBV promoter was active primarily in vascular tissues throughout the plant. In leaves, GUS activity driven by the CsVMV promoter was approximately 24-fold greater than the activity from the 35S promoter and 38-fold greater than the activity from the ScBV promoter. Five promoters, the double 35S promoter, figwort mosaic virus (FMV) promoter, CsVMV promoter, ScBV promoter, and alfalfa small subunit Rubisco (RbcS) promoter were used to control expression of a cDNA from Trichoderma atroviride encoding an endochitinase (ech42). Highest chitinase activity in leaves, roots, and root nodules was obtained in plants containing the CsVMV:ech42 transgene. Plants expressing the endochitinase were challenged with Phoma medicaginisvar. medicaginis, the causal agent of spring black stem and leaf spot of alfalfa. Although endochitinase activity in leaves of transgenic plants was 50- to 2650-fold greater than activity in control plants, none of the transgenic plants showed a consistent increase in disease resistance compared to controls. The high constitutive levels of both GUS and endochitinase activity obtained demonstrate that the CsVMV promoter is useful for high-level transgene expression in alfalfa.
Plant Molecular Biology | 1998
Stephen J. Temple; Suman Bagga; Champa Sengupta-Gopalan
Glutamine synthetase (GS) catalyzes the ATP-dependent condensation of NH3 with glutamate to produce glutamine. In plants GS is an octameric enzyme and is located either in the cytoplasm (GS1) or in the chloroplast (GS2). Two distinct classes of GS1 genes with unique 3′-untranslated region (3′UTR) have been identified in alfalfa. We have demonstrated that the two classes exhibit differential expression pattern in the different plant organs suggesting different functional roles for the different isozymes. To determine the functional significance ofss the two classes of GS1 genes in alfalfa, we have utilized antisense gene constructs aimed specifically at the 3′UTR of the two GS1 genes and introduced them individually into alfalfa. Our data show that the gene constructs are effective in lowering the corresponding transcript level very effectively though there were organ-specific differences in the level of reduction. No transcript corresponding to the antisense gene construct was detected in any of the alfalfa transformants though they accumulated to significant levels in transgenic tobacco containing the same construct. This suggests that the antisense transcript was not stable in the presence of the homologous target sequence. Transgenic alfalfa with up to 80% reduction in the transcript level corresponding to each gene class, however, showed no reduction in GS activity or GS1 polypeptide level. The results suggest that GS1 mRNA levels are not rate-limiting for GS1 polypeptide synthesis and that GS1 levels are controlled both at the transcriptional and translational/post-translational level.
Plant Physiology | 1996
Stephen J. Temple; Sudeesh Kunjibettu; Dominique Roche; Champa Sengupta-Gopalan
Gln synthetase (GS) catalyzes the ATP-dependent condensation of ammonia with glutamate to yield Gln. In higher plants GS is an octameric enzyme and the subunits are encoded by members of a small multigene family. In soybeans (Glycine max), following the onset of N2 fixation there is a dramatic increase in GS activity in the root nodules. GS activity staining of native polyacrylamide gels containing nodule and root extracts showed a common band of activity (GSrs). The nodules also contained a slower-migrating, broad band of enzyme activity (GSns). The GSns activity band is a complex of many isozymes made up of different proportions of two kinds of GS subunits: GSr and GSn. Root nodules formed following inoculation with an Nif- strain of Bradyrhizobium japonicum showed the presence of GS isoenzymes (GSns1) with low enzyme activity, which migrated more slowly than GSns. Gsns1 is most likely made up predominantly of GSn subunits. Our data suggest that, whereas the class I GS genes encoding the GSr subunits are regulated by the availability of NH3, the class II GS genes coding for the GSn subunits are developmentally regulated. Furthermore, we have demonstrated that the GSns1 isozymes in the Nif- nodules are relatively more labile. Our overall conclusion is that GSns activity in soybean nodules is regulated by N2 fixation both at the level of transcription and at the level of holoprotein stability.
Molecular Plant-microbe Interactions | 1999
Gian Trepp; Stephen J. Temple; Bruna Bucciarelli; Li Fang Shi; Carroll P. Vance
During root nodule development several key genes involved in nitrogen fixation and assimilation exhibit enhanced levels of expression. However, little is known about the temporal and spatial distribution patterns of these transcripts. In a systematic study the transcripts for 13 of the essential enzymes involved in alfalfa (Medicago sativa) root nodule nitrogen and carbon metabolism were localized by in situ hybridization. A serial section approach allowed the construction of a map that reflects the relative distribution of these transcripts. In 33-day-old root nodules, the expression of nifH, NADH-dependent glutamate synthase (NADH-GOGAT; EC 1.4.1.14) and a cytosolic isoform of glutamine synthetase (GS13; GS; EC 6.3.1.2) were localized predominantly in a 5- to 15-cell-wide region in the distal part of the nitrogen-fixing zone. This zone was also the region of high expression for leghemoglobin, a second cytosolic glutamine synthetase isoform (GS100), aspartate aminotransferase-2 (AAT-2; EC 2.6.1.1), aspar...
Annals of Botany | 2006
Joachim Schulze; Glena Temple; Stephen J. Temple; Heidrun Beschow; Carroll P. Vance
Plant Physiology | 2001
Jose Luis Ortega; Stephen J. Temple; Champa Sengupta-Gopalan
Journal of Experimental Botany | 2000
Mark A. Schoenbeck; Stephen J. Temple; Gian Trepp; Juerg M Blumenthal; Deborah A. Samac; J. Stephen Gantt; Georgina Hernández; Carroll P. Vance