Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen R. Muza is active.

Publication


Featured researches published by Stephen R. Muza.


Clinical Science | 2004

Intermittent altitude exposures reduce acute mountain sickness at 4300 m.

Beth A. Beidleman; Stephen R. Muza; Charles S. Fulco; Allen Cymerman; Dan T. Ditzler; Dean A. Stulz; Janet E. Staab; Gary S. Skrinar; Steven F. Lewis; Michael N. Sawka

Acute mountain sickness (AMS) commonly occurs at altitudes exceeding 2000-2500 m and usually resolves after acclimatization induced by a few days of chronic residence at the same altitude. Increased ventilation and diuresis may contribute to the reduction in AMS with altitude acclimatization. The aim of the present study was to examine the effects of intermittent altitude exposures (IAE), in combination with rest and exercise training, on the incidence and severity of AMS, resting ventilation and 24-h urine volume at 4300 m. Six lowlanders (age, 23 +/- 2 years; body weight, 77 +/- 6 kg; values are means +/- S.E.M.) completed an Environmental Symptoms Questionnaire (ESQ) and Lake Louise AMS Scoring System (LLS), a resting end-tidal partial pressure of CO2 ( PETCO2) test and a 24-h urine volume collection at sea level (SL) and during a 30 h exposure to 4300 m altitude-equivalent (barometric pressure=446 mmHg) once before (PreIAE) and once after (PostIAE) a 3-week period of IAE (4 h.day(-1), 5 days.week(-1), 4300 m). The previously validated factor score, AMS cerebral score, was calculated from the ESQ and the self-report score was calculated from the LLS at 24 h of altitude exposure to assess the incidence and severity of AMS. During each IAE, three subjects cycled for 45-60 min.day(-1) at 60-70% of maximal O2 uptake (VO2 max) and three subjects rested. Cycle training during each IAE did not affect any of the measured variables, so data from all six subjects were combined. The results showed that the incidence of AMS (%), determined from both the ESQ and LLS, increased (P<0.05) from SL (0 +/- 0) to PreIAE (50 +/- 22) at 24 h of altitude exposure and decreased (P<0.05) from PreIAE to PostIAE (0 +/- 0). The severity of AMS (i.e. AMS cerebral symptom and LLS self-report scores) increased (P<0.05) from SL (0.02 +/- 0.02 and 0.17 +/- 0.17 respectively) to PreIAE (0.49 +/- 0.18 and 4.17 +/- 0.94 respectively) at 24 h of altitude exposure, and decreased (P<0.05) from PreIAE to PostIAE (0.03 +/- 0.02 and 0.83 +/- 0.31 respectively). Resting PETCO2 (mmHg) decreased (i.e. increase in ventilation; P<0.05) from SL (38 +/- 1) to PreIAE (32 +/- 1) at 24 h of altitude exposure and decreased further (P<0.05) from PreIAE to PostIAE (28 +/- 1). In addition, 24-h urine volumes were similar at SL, PreIAE and PostIAE. In conclusion, our findings suggest that 3 weeks of IAE provide an effective alternative to chronic altitude residence for increasing resting ventilation and reducing the incidence and severity of AMS.


Experimental Neurology | 2001

Volumetric Quantification of Brain Swelling after Hypobaric Hypoxia Exposure

István Ákos Mórocz; Gary P. Zientara; Hakon Gudbjartsson; Stephen R. Muza; Timothy Lyons; Paul B. Rock; Ron Kikinis; Ferenc A. Jolesz

We applied a novel MR imaging technique to investigate the effect of acute mountain sickness on cerebral tissue water. Nine volunteers were exposed to hypobaric hypoxia corresponding to 4572 m altitude for 32 h. Such an exposure may cause acute mountain sickness. We imaged the brains of the volunteers before and at 32 h of hypobaric exposure with two different MRI techniques with subsequent data processing. (1) Brain volumes were calculated from 3D MRI data sets by applying a computerized brain segmentation algorithm. For this specific purpose a novel adaptive 3D segmentation program was used with an automatic correction algorithm for RF field inhomogeneity. (2) T(2) decay rates were analyzed in the white matter. The results demonstrated that a significant brain swelling of 36.2 +/- 19.6 ml (2.77 +/- 1.47%, n = 9, P < 0.001) developed after the 32-h hypobaric hypoxia exposure with a maximal observed volume increase of 5.8% (71.3 ml). These volume changes were significant only for the gray matter structures in contrast to the unremarkable changes seen in the white matter. The same study repeated 3 weeks later in 6 of 9 original subjects demonstrated that the brains recovered and returned approximately to the initially determined sea-level brain volume while hypobaric hypoxia exposure once again led to a significant new brain swelling (24.1 +/- 12.1 ml, 1.92 +/- 0.96%, n = 6, P < 0.005). On the contrary, the T(2) mapping technique did not reveal any significant effect of hypobaria on white matter. We present here a technique which is able to detect reversible brain volume changes as they may occur in patients with diffuse brain edema or increased cerebral blood volume, and which may represent a useful noninvasive tool for future evaluations of antiedematous drugs.


High Altitude Medicine & Biology | 2010

Altitude Preexposure Recommendations for Inducing Acclimatization

Stephen R. Muza; Beth A. Beidleman; Charles S. Fulco

For many low-altitude (<1500 m) residents, their travel itineraries may cause them to ascend rapidly to high (>2400 m) altitudes without having the time to develop an adequate degree of altitude acclimatization. Prior to departing on these trips, low-altitude residents can induce some degree of altitude acclimatization by ascending to moderate (>1500 m) or high altitudes during either continuous or intermittent altitude preexposures. Generally, the degree of altitude acclimatization developed is proportional to the altitude attained and the duration of exposure. The available evidence suggests that continuous residence at 2200 m or higher for 1 to 2 days or daily 1.5- to 4-h exposures to >4000 m induce ventilatory acclimatization. Six days at 2200 m substantially decreases acute mountain sickness (AMS) and improves work performance after rapid ascent to 4300 m. There is evidence that 5 or more days above 3000 m within the last 2 months will significantly decrease AMS during a subsequent rapid ascent to 4500 m. Exercise training during the altitude preexposures may augment improvement in physical performance. The persistence of altitude acclimatization after return to low altitude appears to be proportional to the degree of acclimatization developed. The subsequent ascent to high altitude should be scheduled as soon as possible after the last altitude preexposure.


High Altitude Medicine & Biology | 2009

Effect of six days of staging on physiologic adjustments and acute mountain sickness during ascent to 4300 meters.

Beth A. Beldleman; Charles S. Fulco; Stephen R. Muza; Paul B. Rock; Janet E. Staab; Vincent A. Forte; Allen Cymerman

This study determined the effectiveness of 6 days (d) of staging at 2200 m on physiologic adjustments and acute mountain sickness (AMS) during rapid, high-risk ascent to 4300 m. Eleven sea-level (SL) resident men (means +/- SD; 21 +/- 3 yr; 78 +/- 13 kg) completed resting measures of end-tidal CO(2) (Petco(2)), arterial oxygen saturation (Sao(2)), heart rate (HR), and mean arterial pressure (MAP) at SL and within 1 h of exposure to 4300 m in a hypobaric chamber prior to 6 d of staging at 2200 m (preSTG) and on the summit of Pikes Peak following 6 d of staging at 2200 m (postSTG). Immediately following resting ventilation measures, all performed submaximal exercise ( approximately 55% of altitude-specific maximal oxygen uptake) for approximately 2 h on a bicycle ergometer to induce higher levels of AMS. AMS-C, calculated from the Environmental Symptoms Questionnaire, was measured following 4 h and 8 h of exposure at preSTG and postSTG, and the mean was calculated. Resting Petco(2) (mmHg) was unchanged from SL (39.8 +/- 2.6) to preSTG (39.3 +/- 3.0), but decreased (p < 0.05) from preSTG to postSTG (32.8 +/- 2.6). Resting Sao(2) (%) decreased (p < 0.05) from SL (97 +/- 2) to preSTG (80 +/- 4) and increased (p < 0.05) from preSTG to postSTG (83 +/- 3). Resting HR (bpm) and MAP (mmHg) did not change in any of the test conditions. The incidence and severity of AMS-C decreased (p < 0.05) from preSTG (91 +/- 30%; 1.05 +/- 0.56) to postSTG (45 +/- 53%; 0.59 +/- 0.43), respectively. These results suggest that modest physiologic adjustments induced by staging for 6 d at 2200 m reduced the incidence and severity of AMS during rapid, high-risk ascent to 4300 m.


Medicine and Science in Sports and Exercise | 1997

Exercise responses after altitude acclimatization are retained during reintroduction to altitude.

Beth A. Beidleman; Stephen R. Muza; Paul B. Rock; Charles S. Fulco; Timothy Lyons; Reed W. Hoyt; Allen Cymerman

Following 2 to 3 wk of altitude acclimatization, ventilation is increased and heart rate (HR), plasma volume (PV), and lactate accumulation ([La]) are decreased during submaximal exercise. The objective of this study was to determine whether some degree of these exercise responses associated with acclimatization would be retained upon reintroduction to altitude (RA) after 8 d at sea level (SL). Six male lowlanders (X +/- SE; 31 +/- 2 yr, 82.4 +/- 4.6 kg) exercised to exhaustion at the same relative percentages of peak oxygen uptake (VO2peak) at SL, on acute altitude (AA) exposure, after a 16-d chronic altitude (CA) exposure on Pikes Peak (4,300 m), and during a 3- to 4-h RA in a hypobaric chamber (4,300 m; 446 mm Hg) after 8 d at SL. The submaximal exercise to exhaustion time (min) was the same at SL (66.0 +/- 1.6), AA (67.7 +/- 7.3), CA (79.9 +/- 6.2), and RA (67.9 +/- 1.9). At 75% VO2peak: (1) arterial oxygen saturation (SaO2) increased from AA to CA (67.0 +/- 1.5 vs 78.5 +/- 1.8%; P < 0.05) and remained increased at RA (77.0 +/- 2.0%); (2) HR decreased from SL to CA (171 +/- 6 vs 152 +/- 9 beats x min-1; P < 0.05) and remained decreased at RA (157 +/- 5 beats x min-1); (3) calculated PV decreased 6.9 +/- 10.0% at AA, 21.3 +/- 11.1% at CA, and 16.7 +/- 5.4% at RA from SL baseline values, and (4) [La] decreased from AA to CA (5.1 +/- 0.9 vs 1.9 +/- 0.4 mmol x L-1; P < 0.05) and remained decreased at RA (2.6 +/- 0.6 mmol x L-1). Upon RA after 8 d at SL, the acclimatization responses were retained 92 +/- 9% for SaO2, 74 +/- 8% for PV, and 58 +/- 3% for [La] at 75% VO2peak. In conclusion, although submaximal exercise to exhaustion time is not improved upon reintroduction to altitude after 8 d at sea level, retention of beneficial exercise responses associated with altitude acclimatization is likely in individuals whose work, athletic competition, or recreation schedules involve intermittent sojourns to high elevations.


Journal of Applied Physiology | 2010

Effect of hypohydration and altitude exposure on aerobic exercise performance and acute mountain sickness

John W. Castellani; Stephen R. Muza; Samuel N. Cheuvront; Ingrid V. Sils; Charles S. Fulco; Robert W. Kenefick; Beth A. Beidleman; Michael N. Sawka

Hypoxia often causes body water deficits (hypohydration, HYPO); however, the effects of HYPO on aerobic exercise performance and prevalence of acute mountain sickness (AMS) at high altitude (ALT) have not been reported. We hypothesized that 1) HYPO and ALT would each degrade aerobic performance relative to sea level (SL)-euhydrated (EUH) conditions, and combining HYPO and ALT would further degrade performance more than one stressor alone; and 2) HYPO would increase the prevalence and severity of AMS symptoms. Seven lowlander men (25 ± 7 yr old; 82 ± 11 kg; mean ± SD) completed four separate experimental trials. Trials were 1) SL-EUH, 2) SL-HYPO, 3) ALT-EUH, and 4) ALT-HYPO. In HYPO, subjects were dehydrated by 4% of body mass. Subjects maintained hydration status overnight and the following morning entered a hypobaric chamber (at SL or 3,048 m, 27°C) where they completed 30 min of submaximal exercise immediately followed by a 30-min performance time trial (TT). AMS was measured with the Environmental Symptoms Questionnaire-Cerebral Score (AMS-C) and the Lake Louise Scoring System (LLS). The percent change in TT performance, relative to SL-EUH, was -19 ± 12% (334 ± 64 to 278 ± 87 kJ), -11 ± 10% (334 ± 64 to 293 ± 33 kJ), and -34 ± 22% (334 ± 64 to 227 ± 95 kJ), for SL-HYPO, ALT-EUH, and ALT-HYPO, respectively. AMS symptom prevalence was 2/7 subjects at ALT-EUH for AMS-C and LLS and 5/7 and 4/7 at ALT-HYPO for AMS-C and LLS, respectively. The AMS-C symptom severity score (AMS-C score) tended to increase from ALT-EUH to ALT-HYPO but was not significant (P = 0.07). In conclusion, hypohydration at 3,048 m 1) degrades aerobic performance in an additive manner with that induced by ALT; and 2) did not appear to increase the prevalence/severity of AMS symptoms.


Exercise and Sport Sciences Reviews | 2013

Effectiveness of Preacclimatization Strategies for High-Altitude Exposure

Charles S. Fulco; Beth A. Beidleman; Stephen R. Muza

Acute mountain sickness (AMS) and large decrements in endurance exercise performance occur when unacclimatized individuals rapidly ascend to high altitudes. Six altitude and hypoxia preacclimatization strategies were evaluated to determine their effectiveness for minimizing AMS and improving performance during altitude exposures. Strategies using hypobaric chambers or true altitude were much more effective overall than those using normobaric hypoxia (breathing, <20.9% oxygen).


International Journal of Industrial Ergonomics | 1988

Perspectives in microclimate cooling involving protective clothing in hot environments

Karen L. Speckman; Anne E. Allan; Michael N. Sawka; Andrew J. Young; Stephen R. Muza

Abstract The effectiveness of microclimate cooling systems in alleviating the thermal burden imposed upon soldiers by the wearing of chemical protective clothing under varying environmental conditions has been examined in a series of studies conducted by the U.S. Army Research Institute of Environmental Medicine on the copper manikin, in the climatic chambers and in the field. Liquid-cooled undergarments (LCU) and air-cooled vests (ACV) were tested under environmental conditions from 29°C, 85% rh to 52°C, 25% rh. These parameters were chosen to simulate conditions which may be encountered in either armored vehicles, or in desert or tropic climates. We have reviewed seven studies using LCU (including two ice-cooled vests) and six studies using ACV. LCU tests investigated the effect on cooling when the proportion of total skin surface covered by the LCU was varied. ACV tests examined the effects on cooling during different combinations of air temperature, humidity and air flow rates. Additionally, these combinations were tested at low and moderate metabolic rates. The findings from these LCU and ACV studies demonstrate that (a) cooling can be increased with a greater body surface coverage by a LCU, and (b) evaporative cooling with an ACV is enhanced at low metabolic rates with optimal combinations of air flow rates and dry bulb/dew point temperatures, resulting in the extension of tolerance time. The application of these findings from military to industrial work situations is apparent.


Medicine and Science in Sports and Exercise | 2009

Intermittent Hypoxic Exposure Does Not Improve Endurance Performance at Altitude

Beth A. Beidleman; Stephen R. Muza; Charles S. Fulco; Juli E. Jones; Eric Lammi; Janet E. Staab; Allen Cymerman

PURPOSE This study examined the effect of 1 wk of normobaric intermittent hypoxic exposure (IHE) combined with exercise training on endurance performance at a 4300-m altitude (HA). METHODS Seventeen male lowlanders were divided into an IHE (n = 11) or SHAM (n = 6) group. Each completed cycle endurance testing consisting of two 20-min steady state (SS) exercise bouts (at 40% and 60% V O2peak) followed by a 10-min break and then a 720-kJ cycle time trial at HA before IHE or SHAM treatment (Pre-T). IHE treatment consisted of a 2-h rest at a PO2 of 90 mm Hg followed by two 25-min bouts of exercise at approximately 80% of peak HR at a PO2 of 110 mm Hg for 1 wk in a hypoxia room. SHAM treatment was identical except that the PO2 was 148 mm Hg for both rest and exercise. After IHE or SHAM treatment (Post-T), all completed a second cycle endurance test at HA. HR, arterial oxygen saturation (SaO2), and RPE were obtained from the 10th to the 15th minute during the two SS exercise bouts and every 5 min during the time trial. RESULTS Seven volunteers in the IHE group could not finish the 720-kJ time trial either at Pre-T or at Post-T. Time trial analysis was limited, therefore, to the time to reach 360 kJ (halfway point) for all volunteers. From Pre-T to Post-T, there was no improvement in time trial performance (min +/- SE) in the IHE (62.0 +/- 4.8 to 63.7 +/- 5.2) or SHAM (60.9 +/- 6.3 to 54.2 +/- 6.8) group. There was no change from Pre-T to Post-T in HR, SaO2, and RPE during the two SS exercise bouts or time trial in either group. CONCLUSIONS One week of IHE combined with exercise training does not improve endurance performance at a 4300-m altitude in male lowlanders.


Medicine and Science in Sports and Exercise | 2002

Substrate oxidation is altered in women during exercise upon acute altitude exposure

Beth A. Beidleman; Paul B. Rock; Stephen R. Muza; Charles S. Fulco; Lindsay L. Gibson; Gary H. Kamimori; Allen Cymerman

PURPOSE The purpose of this study was to determine whether substrate oxidation during submaximal exercise in women is affected by an acute exposure to 4300-m altitude and menstrual cycle phase. METHODS Eight female lowlanders (mean +/- SD; 33 +/- 3 yr, 58 +/- 6 kg, 163 +/- 8 cm) completed a peak oxygen uptake (VO2peak) and submaximal exercise to exhaustion (EXH) test at 70% of their altitude-specific VO2peak at sea level (SL) and during an acute altitude (AA) exposure to 4300 m in a hypobaric chamber (446 mm Hg) in their early-follicular and midluteal menstrual cycle phase. The respiratory exchange ratio (RER) was calculated from oxygen uptake and carbon dioxide output measurements made during the EXH tests, and used to estimate the percent contribution of fat and carbohydrate to energy metabolism. Blood samples were taken at rest and every 15 min during the EXH tests. Blood samples were evaluated for glucose, lactate, glycerol, free fatty acids, insulin, growth hormone, cortisol, glucagon, epinephrine, norepinephrine, estradiol, and progesterone concentrations. RESULTS Despite increased (P < 0.05) estradiol and progesterone levels in the midluteal phase, substrate oxidation, energy substrates, and metabolic hormones were not affected by cycle phase at SL or AA. However, free fatty acids and cortisol were increased (P < 0.05) whereas RER was decreased (P < 0.05) during exercise upon AA exposure compared with SL in both cycle phases. CONCLUSIONS These data suggest that substrate oxidation is altered in women during exercise at AA compared with SL but is not affected by cycle phase. Whether increased fat or protein oxidation accounts for the lower RER values during the AA exposure cannot be determined from this study but warrants further investigation.

Collaboration


Dive into the Stephen R. Muza's collaboration.

Top Co-Authors

Avatar

Charles S. Fulco

United States Army Research Institute of Environmental Medicine

View shared research outputs
Top Co-Authors

Avatar

Allen Cymerman

United States Army Research Institute of Environmental Medicine

View shared research outputs
Top Co-Authors

Avatar

Beth A. Beidleman

United States Army Research Institute of Environmental Medicine

View shared research outputs
Top Co-Authors

Avatar

Michael N. Sawka

United States Army Research Institute of Environmental Medicine

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Young

United States Army Research Institute of Environmental Medicine

View shared research outputs
Top Co-Authors

Avatar

Janet E. Staab

United States Army Research Institute of Environmental Medicine

View shared research outputs
Top Co-Authors

Avatar

K. B. Pandolf

United States Army Research Institute of Environmental Medicine

View shared research outputs
Top Co-Authors

Avatar

Barry Braun

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juli E. Jones

University of Massachusetts Amherst

View shared research outputs
Researchain Logo
Decentralizing Knowledge