Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janet E. Staab is active.

Publication


Featured researches published by Janet E. Staab.


Clinical Science | 2004

Intermittent altitude exposures reduce acute mountain sickness at 4300 m.

Beth A. Beidleman; Stephen R. Muza; Charles S. Fulco; Allen Cymerman; Dan T. Ditzler; Dean A. Stulz; Janet E. Staab; Gary S. Skrinar; Steven F. Lewis; Michael N. Sawka

Acute mountain sickness (AMS) commonly occurs at altitudes exceeding 2000-2500 m and usually resolves after acclimatization induced by a few days of chronic residence at the same altitude. Increased ventilation and diuresis may contribute to the reduction in AMS with altitude acclimatization. The aim of the present study was to examine the effects of intermittent altitude exposures (IAE), in combination with rest and exercise training, on the incidence and severity of AMS, resting ventilation and 24-h urine volume at 4300 m. Six lowlanders (age, 23 +/- 2 years; body weight, 77 +/- 6 kg; values are means +/- S.E.M.) completed an Environmental Symptoms Questionnaire (ESQ) and Lake Louise AMS Scoring System (LLS), a resting end-tidal partial pressure of CO2 ( PETCO2) test and a 24-h urine volume collection at sea level (SL) and during a 30 h exposure to 4300 m altitude-equivalent (barometric pressure=446 mmHg) once before (PreIAE) and once after (PostIAE) a 3-week period of IAE (4 h.day(-1), 5 days.week(-1), 4300 m). The previously validated factor score, AMS cerebral score, was calculated from the ESQ and the self-report score was calculated from the LLS at 24 h of altitude exposure to assess the incidence and severity of AMS. During each IAE, three subjects cycled for 45-60 min.day(-1) at 60-70% of maximal O2 uptake (VO2 max) and three subjects rested. Cycle training during each IAE did not affect any of the measured variables, so data from all six subjects were combined. The results showed that the incidence of AMS (%), determined from both the ESQ and LLS, increased (P<0.05) from SL (0 +/- 0) to PreIAE (50 +/- 22) at 24 h of altitude exposure and decreased (P<0.05) from PreIAE to PostIAE (0 +/- 0). The severity of AMS (i.e. AMS cerebral symptom and LLS self-report scores) increased (P<0.05) from SL (0.02 +/- 0.02 and 0.17 +/- 0.17 respectively) to PreIAE (0.49 +/- 0.18 and 4.17 +/- 0.94 respectively) at 24 h of altitude exposure, and decreased (P<0.05) from PreIAE to PostIAE (0.03 +/- 0.02 and 0.83 +/- 0.31 respectively). Resting PETCO2 (mmHg) decreased (i.e. increase in ventilation; P<0.05) from SL (38 +/- 1) to PreIAE (32 +/- 1) at 24 h of altitude exposure and decreased further (P<0.05) from PreIAE to PostIAE (28 +/- 1). In addition, 24-h urine volumes were similar at SL, PreIAE and PostIAE. In conclusion, our findings suggest that 3 weeks of IAE provide an effective alternative to chronic altitude residence for increasing resting ventilation and reducing the incidence and severity of AMS.


High Altitude Medicine & Biology | 2009

Effect of six days of staging on physiologic adjustments and acute mountain sickness during ascent to 4300 meters.

Beth A. Beldleman; Charles S. Fulco; Stephen R. Muza; Paul B. Rock; Janet E. Staab; Vincent A. Forte; Allen Cymerman

This study determined the effectiveness of 6 days (d) of staging at 2200 m on physiologic adjustments and acute mountain sickness (AMS) during rapid, high-risk ascent to 4300 m. Eleven sea-level (SL) resident men (means +/- SD; 21 +/- 3 yr; 78 +/- 13 kg) completed resting measures of end-tidal CO(2) (Petco(2)), arterial oxygen saturation (Sao(2)), heart rate (HR), and mean arterial pressure (MAP) at SL and within 1 h of exposure to 4300 m in a hypobaric chamber prior to 6 d of staging at 2200 m (preSTG) and on the summit of Pikes Peak following 6 d of staging at 2200 m (postSTG). Immediately following resting ventilation measures, all performed submaximal exercise ( approximately 55% of altitude-specific maximal oxygen uptake) for approximately 2 h on a bicycle ergometer to induce higher levels of AMS. AMS-C, calculated from the Environmental Symptoms Questionnaire, was measured following 4 h and 8 h of exposure at preSTG and postSTG, and the mean was calculated. Resting Petco(2) (mmHg) was unchanged from SL (39.8 +/- 2.6) to preSTG (39.3 +/- 3.0), but decreased (p < 0.05) from preSTG to postSTG (32.8 +/- 2.6). Resting Sao(2) (%) decreased (p < 0.05) from SL (97 +/- 2) to preSTG (80 +/- 4) and increased (p < 0.05) from preSTG to postSTG (83 +/- 3). Resting HR (bpm) and MAP (mmHg) did not change in any of the test conditions. The incidence and severity of AMS-C decreased (p < 0.05) from preSTG (91 +/- 30%; 1.05 +/- 0.56) to postSTG (45 +/- 53%; 0.59 +/- 0.43), respectively. These results suggest that modest physiologic adjustments induced by staging for 6 d at 2200 m reduced the incidence and severity of AMS during rapid, high-risk ascent to 4300 m.


Medicine and Science in Sports and Exercise | 2009

Intermittent Hypoxic Exposure Does Not Improve Endurance Performance at Altitude

Beth A. Beidleman; Stephen R. Muza; Charles S. Fulco; Juli E. Jones; Eric Lammi; Janet E. Staab; Allen Cymerman

PURPOSE This study examined the effect of 1 wk of normobaric intermittent hypoxic exposure (IHE) combined with exercise training on endurance performance at a 4300-m altitude (HA). METHODS Seventeen male lowlanders were divided into an IHE (n = 11) or SHAM (n = 6) group. Each completed cycle endurance testing consisting of two 20-min steady state (SS) exercise bouts (at 40% and 60% V O2peak) followed by a 10-min break and then a 720-kJ cycle time trial at HA before IHE or SHAM treatment (Pre-T). IHE treatment consisted of a 2-h rest at a PO2 of 90 mm Hg followed by two 25-min bouts of exercise at approximately 80% of peak HR at a PO2 of 110 mm Hg for 1 wk in a hypoxia room. SHAM treatment was identical except that the PO2 was 148 mm Hg for both rest and exercise. After IHE or SHAM treatment (Post-T), all completed a second cycle endurance test at HA. HR, arterial oxygen saturation (SaO2), and RPE were obtained from the 10th to the 15th minute during the two SS exercise bouts and every 5 min during the time trial. RESULTS Seven volunteers in the IHE group could not finish the 720-kJ time trial either at Pre-T or at Post-T. Time trial analysis was limited, therefore, to the time to reach 360 kJ (halfway point) for all volunteers. From Pre-T to Post-T, there was no improvement in time trial performance (min +/- SE) in the IHE (62.0 +/- 4.8 to 63.7 +/- 5.2) or SHAM (60.9 +/- 6.3 to 54.2 +/- 6.8) group. There was no change from Pre-T to Post-T in HR, SaO2, and RPE during the two SS exercise bouts or time trial in either group. CONCLUSIONS One week of IHE combined with exercise training does not improve endurance performance at a 4300-m altitude in male lowlanders.


Aviation, Space, and Environmental Medicine | 2009

Exercise Performance of Sea-Level Residents at 4300 m After 6 Days at 2200 m

Charles S. Fulco; Stephen R. Muza; Beth A. Beidleman; Juli E. Jones; Janet E. Staab; Paul B. Rock; Allen Cymerman

UNLABELLED Partial acclimatization resulting from staging at moderate altitude reduces acute mountain sickness during rapid exposure to higher altitudes (e.g., 4300 m). Whether staging also benefits endurance performance has not yet been scientifically evaluated. PURPOSE Determine the effectiveness of staging at 2200 m on time trial (TT) performance of unacclimatized sea-level residents (SLR) during rapid exposure to 4300 m. There were 10 healthy men (mean +/- SE: 21 +/- 1 yrs) who performed 720 kJ cycle TT at SL and following -2 h of exposure to 4300 m (459 Torr) before (ALT-1) and after (ALT-2) living for 6 d at 2200 m (601 Torr). METHODS Hemoglobin concentration ([Hb]), hematocrit (Hct), arterial oxygen saturation (SaO2), ratings of perceived exertion (RPE), and heart rate (HR) were measured before and during exercise. RESULTS Compared to SL (73 +/- 6 min), TT performance was impaired (P < 0.01) by 38.1 +/- 6 min at ALT-1, but only by 18.7 +/- 3 min at ALT-2. The 44 +/- 8% TT improvement at 4300 m was directly correlated with increases in exercise SaO2 (R = 0.88, P < 0.03), but not to changes in [Hb] or Hct. In addition, RPE was lower (13 +/- 1 vs.16 +/- 1, P < 0.01) and HR remained at approximately 148 +/- 5 bpm despite performing the TT at a higher power output during ALT-2 than ALT-1 (120 +/- 7 vs.100 +/- 10 W, P < 0.01). CONCLUSION Partial acclimatization resulting from staging attenuated the impairment in TT performance of SLR rapidly exposed to 4300 m. The close association between improved TT performance and changes in exercise SaO2, compared to a lack of association with changes in [Hb] or Hct, suggest ventilatory acclimatization may have been the major factor contributing to the performance improvement.


Aiha Journal | 2003

Upper Body Cooling During Exercise-Heat Stress Wearing the Improved Toxicological Agent Protective System for HAZMAT Operations

Bruce S. Cadarette; Leslie Levine; Janet E. Staab; Margaret A. Kolka; Matthew M. Correa; Matthew Whipple; Michael N. Sawka

This study compared endurance in a U.S. Army developmental Occupational Safety and Health Administration Level B personal protective equipment (PPE) system against the toxicological agent protective (TAP) suit, the Armys former standard PPE for Level A and Level B toxic environments. The developmental system consisted of two variations: the improved toxicological agent protective (ITAP) suit with self-contained breathing apparatus (ITAP-SCBA), weight 32 kg, and the ITAP with blower (ITAP-B), weight 21 kg. Both ITAP suits included the personal ice cooling system (PICS). TAP (weight 9.5 kg) had no cooling. It was hypothesized that PICS would effectively cool both ITAP configurations, and endurance in TAP would be limited by heat strain. Eight subjects (six men, two women) attempted three 2-hour treadmill walks (0.89 m/sec, 0% grade, rest/exercise cycles of 10/20 min) at 38 degrees C, 30% relative humidity. Metabolic rate for TAP (222+/-35 W) was significantly less than either ITAP-SCBA (278+/-27 W) or ITAP-B (262+/-24 W) (p<0.05). Endurance time was longer in ITAP-SCBA (85+/-20 min) and ITAP-B (87+/-25 min) than in TAP (46+/-10 min) (p<0.05). Heat storage was greater in TAP (77+/-15 W.m(-2)) than in ITAP-SCBA (51+/-16 W.m(-2)) (p<0.05), which was not different from ITAP-B (59+/-14 W.m(-2)). Sweating rate was greater in TAP (23.5+/-11.7 g/min(1)) than in either ITAP-SCBA (11.1+/-2.9 g/min) or ITAP-B (12.8+/-3.5 g/min) (p<0.05). Endurance in ITAP was nearly twice as long as in PPE with no cooling, even though the PICS, SCBA tanks, and new uniform itself all served to increase metabolic cost over that in TAP. PICS could also be used with civilian Levels A and B PPE increasing work time and worker safety.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2017

Quantitative model of hematologic and plasma volume responses after ascent and acclimation to moderate to high altitudes

Beth A. Beidleman; Janet E. Staab; Stephen R. Muza; Michael N. Sawka

Despite decades of research, the magnitude and time course of hematologic and plasma volume (PV) changes following rapid ascent and acclimation to various altitudes are not precisely described. To develop a quantitative model, we utilized a comprehensive database and general linear mixed models to analyze 1,055 hemoglobin ([Hb]) and hematocrit (Hct) measurements collected at sea level and repeated time points at various altitudes in 393 unacclimatized men (n = 270) and women (n = 123) who spent between 2 h and 7 days at 2,500-4,500 m under well-controlled and standardized experimental conditions. The PV change (ΔPV) was calculated from [Hb] and Hct measurements during a time period when erythrocyte volume is stable. The results are 1) ΔPV decreases rapidly (~6%) after the 1st day at 2,500 m and [Hb] and Hct values increase by 0.5 g/dl and 1.5 points, respectively; 2) ΔPV decreases an additional 1%, and [Hb] and Hct increase an additional 0.1 g/dl and 0.2 points every 500-m increase in elevation above 2,500 m after the 1st day; 3) ΔPV continues to decrease over time at altitude, but the magnitude of this decrease and subsequent increase in [Hb] and Hct levels is dependent on elevation and sex; and 4) individuals with high initial levels of [Hb] and Hct and older individuals hemoconcentrate less at higher elevations. This study provides the first quantitative delineation of ΔPV and hematological responses during the first week of exposure over a wide range of altitudes and demonstrates that absolute altitude and time at altitude, as well as initial hematologic status, sex, and age impact the response.


High Altitude Medicine & Biology | 2013

Efficacy of Residence at Moderate Versus Low Altitude on Reducing Acute Mountain Sickness in Men Following Rapid Ascent to 4300 m

Janet E. Staab; Beth A. Beidleman; Stephen R. Muza; Charles S. Fulco; Paul B. Rock; Allen Cymerman

To determine if residence at moderate (~2000 m) compared to low (<50 m) altitude reduces acute mountain sickness (AMS) in men during subsequent rapid ascent to a higher altitude. Nine moderate-altitude residents (MAR) and 18 sea-level residents (SLR) completed the Environmental Symptoms Questionnaire (ESQ) at their respective baseline residence and again at 12, 24, 48, and 72 h at 4300 m to assess the severity and prevalence of AMS. AMS cerebral factor score (AMS-C) was calculated from the ESQ at each time point. AMS was judged to be present if AMS-C was ≥0.7. Resting end-tidal CO2 (PETco2) and arterial oxygen saturation (Sao2) were assessed prior to and at 24, 48, and 72 h at 4300 m. Resting venous blood samples were collected prior to and at 72 h at 4300 m to estimate plasma volume (PV) changes. MAR compared to SLR: 1) AMS severity at 4300 was lower (p<0.05) at 12 h (0.50±0.69 vs. 1.48±1.28), 24 h (0.15±0.19 vs. 1.39±1.19), 48 h (0.10±0.18 vs. 1.37±1.49) and 72 h (0.08±0.12 vs. 0.69±0.70); 2) AMS prevalence at 4300 was lower (p<0.05) at 12 h (22% vs. 72%), 24 h (0% vs. 56%), 48 h (0% vs. 56%), and 72 h (0% vs. 45%); 3) resting Sao2 (%) was lower (p<0.05) at baseline (95±1 vs. 99±1) but higher (p<0.05) at 4300 at 24 h (86±2 vs. 81±5), 48 h (88±3 vs. 83±6), and 72 h (88±2 vs. 83±5); and 4) PV (%) did not differ at 72 h at 4300 m in the MAR (4.5±6.7) but was reduced for the SLR (-8.1±10.4). These results suggest that ventilatory and hematological acclimatization acquired while living at moderate altitude, as indicated by a higher resting Sao2 and no reduction in PV during exposure to a higher altitude, is associated with greatly reduced AMS after rapid ascent to high altitude.


Medicine and Science in Sports and Exercise | 2016

Quantitative Model of Sustained Physical Task Duration at Varying Altitudes.

Beth A. Beidleman; Charles S. Fulco; Mark J. Buller; Sean P. Andrew; Janet E. Staab; Stephen R. Muza

PURPOSE The objective of this study is to develop a quantitative model that can be used before ascent to altitude (ALT) to predict how much longer a sustained physical task would take for unacclimatized individuals in the early hours of exposure. METHODS Using multiple linear regression, we analyzed time-trial (TT) performance on 95 unacclimatized men (n = 83) and women (n = 12) at sea level (SL) and at an ALT ranging from 2500 to 4300 m. The TT was initiated within 4 h of ascent to ALT. The independent variables known before ascent were as follows: ALT, age, height, weight, sex, SL peak oxygen uptake, SL task duration time, and body mass index (BMI) classification (normal weight vs overweight). The dependent variable was the percent increase in TT duration from SL to ALT. RESULTS The most significant factor in the model was ALT (P = 0.0001), followed by BMI classification (P = 0.0009) and the interaction between BMI classification and ALT (P = 0.003). The model is as follows: percent increase in TT duration = [100 + e(-1.517+1.323 (ALT)+3.124 (BMI class)-0.769 (ALT) (BMI class)]. The percent increase in TT duration in overweight individuals was 129% greater than for normal-weight individuals at 3000 m. However, as ALT increased beyond 3000 m, the disparity between groups decreased until 4050 m where the percent increase in TT duration became greater for normal-weight individuals. CONCLUSIONS This model provides the first quantitative estimates of the percent increase in sustained physical task duration during initial exposure to a wide range of elevations. Because only two easily obtainable factors are required as inputs for the model (ALT and BMI classification), this model can be used by many unacclimatized individuals to better plan their activities at ALT.


Journal of Applied Physiology | 2017

Is normobaric hypoxia an effective treatment for sustaining previously acquired altitude acclimatization

Beth A. Beidleman; Charles S. Fulco; Bruce S. Cadarette; Allen Cymerman; Mark J. Buller; Roy M. Salgado; Alexander M. Posch; Janet E. Staab; Ingrid V. Sils; Beau R. Yurkevicius; Adam J. Luippold; Alexander P. Welles; Stephen R. Muza

This study examined whether normobaric hypoxia (NH) treatment is more efficacious for sustaining high-altitude (HA) acclimatization-induced improvements in ventilatory and hematologic responses, acute mountain sickness (AMS), and cognitive function during reintroduction to altitude (RA) than no treatment at all. Seventeen sea-level (SL) residents (age = 23 ± 6 yr; means ± SE) completed in the following order: 1) 4 days of SL testing; 2) 12 days of HA acclimatization at 4,300 m; 3) 12 days at SL post-HA acclimatization (Post) where each received either NH (n = 9, [Formula: see text] = 0.122) or Sham (n = 8; [Formula: see text] = 0.207) treatment; and 4) 24-h reintroduction to 4,300-m altitude (RA) in a hypobaric chamber (460 Torr). End-tidal carbon dioxide pressure ([Formula: see text]), hematocrit (Hct), and AMS cerebral factor score were assessed at SL, on HA2 and HA11, and after 20 h of RA. Cognitive function was assessed using the SynWin multitask performance test at SL, on HA1 and HA11, and after 4 h of RA. There was no difference between NH and Sham treatment, so data were combined. [Formula: see text] (mmHg) decreased from SL (37.2 ± 0.5) to HA2 (32.2 ± 0.6), decreased further by HA11 (27.1 ± 0.4), and then increased from HA11 during RA (29.3 ± 0.6). Hct (%) increased from SL (42.3 ± 1.1) to HA2 (45.9 ± 1.0), increased again from HA2 to HA11 (48.5 ± 0.8), and then decreased from HA11 during RA (46.4 ± 1.2). AMS prevalence (%) increased from SL (0 ± 0) to HA2 (76 ± 11) and then decreased at HA11 (0 ± 0) and remained depressed during RA (17 ± 10). SynWin scores decreased from SL (1,615 ± 62) to HA1 (1,306 ± 94), improved from HA1 to HA11 (1,770 ± 82), and remained increased during RA (1,707 ± 75). These results demonstrate that HA acclimatization-induced improvements in ventilatory and hematologic responses, AMS, and cognitive function are partially retained during RA after 12 days at SL whether or not NH treatment is utilized.NEW & NOTEWORTHY This study demonstrates that normobaric hypoxia treatment over a 12-day period at sea level was not more effective for sustaining high-altitude (HA) acclimatization during reintroduction to HA than no treatment at all. The noteworthy aspect is that athletes, mountaineers, and military personnel do not have to go to extraordinary means to retain HA acclimatization to an easily accessible and relevant altitude if reexposure occurs within a 2-wk time period.


Medicine and Science in Sports and Exercise | 2003

Carbohydrate Supplementation Improves Time-Trial Cycle Performance at 4300 m Altitude.

Charles S. Fulco; Kenneth Kambis; Anne L. Friedlander; Paul B. Rock; Janet E. Staab

Abstract : Carbohydrate supplementation (CHOS) during prolonged (> 1 hr) heavy cycle exercise at sea level (SL) enhances glucose availability and oxidation, allowing performance at higher work rates compared to control. However, at altitude (ALT), hypoxemia exacerbated by exercise may limit work rate increases and time-trial cycle performance improvements with CHOS. The purpose of this study was to determine if CHOS improves performance at ALT.

Collaboration


Dive into the Janet E. Staab's collaboration.

Top Co-Authors

Avatar

Beth A. Beidleman

United States Army Research Institute of Environmental Medicine

View shared research outputs
Top Co-Authors

Avatar

Charles S. Fulco

United States Army Research Institute of Environmental Medicine

View shared research outputs
Top Co-Authors

Avatar

Stephen R. Muza

United States Army Research Institute of Environmental Medicine

View shared research outputs
Top Co-Authors

Avatar

Allen Cymerman

United States Army Research Institute of Environmental Medicine

View shared research outputs
Top Co-Authors

Avatar

Michael N. Sawka

United States Army Research Institute of Environmental Medicine

View shared research outputs
Top Co-Authors

Avatar

Juli E. Jones

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Bruce S. Cadarette

United States Army Research Institute of Environmental Medicine

View shared research outputs
Top Co-Authors

Avatar

Margaret A. Kolka

United States Army Research Institute of Environmental Medicine

View shared research outputs
Top Co-Authors

Avatar

Eric Lammi

United States Army Research Institute of Environmental Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge