Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen R. Piccolo is active.

Publication


Featured researches published by Stephen R. Piccolo.


Genomics | 2012

A single-sample microarray normalization method to facilitate personalized-medicine workflows.

Stephen R. Piccolo; Ying Sun; Joshua D. Campbell; Marc E. Lenburg; Andrea Bild; W. Evan Johnson

Gene-expression microarrays allow researchers to characterize biological phenomena in a high-throughput fashion but are subject to technological biases and inevitable variabilities that arise during sample collection and processing. Normalization techniques aim to correct such biases. Most existing methods require multiple samples to be processed in aggregate; consequently, each samples output is influenced by other samples processed jointly. However, in personalized-medicine workflows, samples may arrive serially, so renormalizing all samples upon each new arrival would be impractical. We have developed Single Channel Array Normalization (SCAN), a single-sample technique that models the effects of probe-nucleotide composition on fluorescence intensity and corrects for such effects, dramatically increasing the signal-to-noise ratio within individual samples while decreasing variation across samples. In various benchmark comparisons, we show that SCAN performs as well as or better than competing methods yet has no dependence on external reference samples and can be applied to any single-channel microarray platform.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Multiplatform single-sample estimates of transcriptional activation

Stephen R. Piccolo; Michelle Rachel Withers; Owen E. Francis; Andrea Bild; W. Evan Johnson

Significance We present our Universal exPression Code (UPC) approach for deriving “barcodes,” which estimate the active/inactive state of genes in a sample. UPCs normalize for technological variance and standardize data so they can be combined across microarray and RNA-sequencing experiments with high concordance. Because our method is applied to one sample at a time and thus bypasses the need to standardize samples together, it is distinctively suitable for situations in which samples arrive serially rather than in batches. We demonstrate our method’s utility in various biomedical research applications and compare against technology-specific approaches. Over the past two decades, many biotechnology platforms have been developed for high-throughput gene expression profiling. However, because each platform is subject to technology-specific biases and produces distinct raw-data distributions, researchers have experienced difficulty in integrating data across platforms. Data integration is crucial to data-generating consortiums, researchers transitioning to newer profiling technologies, and individuals seeking to aggregate data across experiments. We address this need with our Universal exPression Code (UPC) approach, which corrects for platform-specific background noise using models that account for the genomic base composition and length of target regions; this approach also uses a mixture model to estimate whether a gene is active in a particular profiling sample. The latter produces standardized UPC values on a zero-to-one scale, so that they can be interpreted consistently, irrespective of profiling technology, thus enabling downstream analysis pipelines to be developed in a platform-agnostic manner. The UPC method can be applied to one- and two-channel expression microarrays and to next-generation sequencing data (RNA sequencing). Furthermore, UPCs are derived using information from within a given sample only—no ancillary samples are required at processing time. Thus, UPCs are suitable for personalized-medicine workflows where samples must be processed individually rather than in batches. In a variety of analyses and comparisons, UPCs perform comparably to other methods designed specifically for microarrays or RNA sequencing in most settings. Software for calculating UPCs is freely available at www.bioconductor.org/packages/release/bioc/html/SCAN.UPC.html.


GigaScience | 2016

Tools and techniques for computational reproducibility

Stephen R. Piccolo; Michael B. Frampton

When reporting research findings, scientists document the steps they followed so that others can verify and build upon the research. When those steps have been described in sufficient detail that others can retrace the steps and obtain similar results, the research is said to be reproducible. Computers play a vital role in many research disciplines and present both opportunities and challenges for reproducibility. Computers can be programmed to execute analysis tasks, and those programs can be repeated and shared with others. The deterministic nature of most computer programs means that the same analysis tasks, applied to the same data, will often produce the same outputs. However, in practice, computational findings often cannot be reproduced because of complexities in how software is packaged, installed, and executed—and because of limitations associated with how scientists document analysis steps. Many tools and techniques are available to help overcome these challenges; here we describe seven such strategies. With a broad scientific audience in mind, we describe the strengths and limitations of each approach, as well as the circumstances under which each might be applied. No single strategy is sufficient for every scenario; thus we emphasize that it is often useful to combine approaches.


Alzheimers & Dementia | 2016

Crowdsourced estimation of cognitive decline and resilience in Alzheimer's disease

Genevera I. Allen; Nicola Amoroso; Catalina V Anghel; Venkat K. Balagurusamy; Christopher Bare; Derek Beaton; Roberto Bellotti; David A. Bennett; Kevin L. Boehme; Paul C. Boutros; Laura Caberlotto; Cristian Caloian; Frederick Campbell; Elias Chaibub Neto; Yu Chuan Chang; Beibei Chen; Chien Yu Chen; Ting Ying Chien; Timothy W.I. Clark; Sudeshna Das; Christos Davatzikos; Jieyao Deng; Donna N. Dillenberger; Richard Dobson; Qilin Dong; Jimit Doshi; Denise Duma; Rosangela Errico; Guray Erus; Evan Everett

Identifying accurate biomarkers of cognitive decline is essential for advancing early diagnosis and prevention therapies in Alzheimers disease. The Alzheimers disease DREAM Challenge was designed as a computational crowdsourced project to benchmark the current state‐of‐the‐art in predicting cognitive outcomes in Alzheimers disease based on high dimensional, publicly available genetic and structural imaging data. This meta‐analysis failed to identify a meaningful predictor developed from either data modality, suggesting that alternate approaches should be considered for prediction of cognitive performance.


Nature Medicine | 2017

The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions

Hamid Bolouri; Jason E. Farrar; Timothy J. Triche; Rhonda E. Ries; Emilia L. Lim; Todd A. Alonzo; Yussanne Ma; Richard G. Moore; Andrew J. Mungall; Marco A. Marra; Jinghui Zhang; Xiaotu Ma; Yu Liu; Yanling Liu; Jaime M. Guidry Auvil; Tanja M. Davidsen; Patee Gesuwan; Leandro C. Hermida; Bodour Salhia; Stephen Capone; Giridharan Ramsingh; Christian M. Zwaan; Sanne Noort; Stephen R. Piccolo; E. Anders Kolb; Alan S. Gamis; Malcolm A. Smith; Daniela S. Gerhard; Soheil Meshinchi

We present the molecular landscape of pediatric acute myeloid leukemia (AML) and characterize nearly 1,000 participants in Childrens Oncology Group (COG) AML trials. The COG–National Cancer Institute (NCI) TARGET AML initiative assessed cases by whole-genome, targeted DNA, mRNA and microRNA sequencing and CpG methylation profiling. Validated DNA variants corresponded to diverse, infrequent mutations, with fewer than 40 genes mutated in >2% of cases. In contrast, somatic structural variants, including new gene fusions and focal deletions of MBNL1, ZEB2 and ELF1, were disproportionately prevalent in young individuals as compared to adults. Conversely, mutations in DNMT3A and TP53, which were common in adults, were conspicuously absent from virtually all pediatric cases. New mutations in GATA2, FLT3 and CBL and recurrent mutations in MYC-ITD, NRAS, KRAS and WT1 were frequent in pediatric AML. Deletions, mutations and promoter DNA hypermethylation convergently impacted Wnt signaling, Polycomb repression, innate immune cell interactions and a cluster of zinc finger–encoding genes associated with KMT2A rearrangements. These results highlight the need for and facilitate the development of age-tailored targeted therapies for the treatment of pediatric AML.


Bioinformatics | 2015

ASSIGN: Context-specific Genomic Profiling of Multiple Heterogeneous Biological Pathways

Ying Shen; Mumtahena Rahman; Stephen R. Piccolo; Daniel Gusenleitner; Nader N. El-Chaar; Luis Cheng; Stefano Monti; Andrea Bild; W. Evan Johnson

MOTIVATION Although gene-expression signature-based biomarkers are often developed for clinical diagnosis, many promising signatures fail to replicate during validation. One major challenge is that biological samples used to generate and validate the signature are often from heterogeneous biological contexts-controlled or in vitro samples may be used to generate the signature, but patient samples may be used for validation. In addition, systematic technical biases from multiple genome-profiling platforms often mask true biological variation. Addressing such challenges will enable us to better elucidate disease mechanisms and provide improved guidance for personalized therapeutics. RESULTS Here, we present a pathway profiling toolkit, Adaptive Signature Selection and InteGratioN (ASSIGN), which enables robust and context-specific pathway analyses by efficiently capturing pathway activity in heterogeneous sets of samples and across profiling technologies. The ASSIGN framework is based on a flexible Bayesian factor analysis approach that allows for simultaneous profiling of multiple correlated pathways and for the adaptation of pathway signatures into specific disease. We demonstrate the robustness and versatility of ASSIGN in estimating pathway activity in simulated data, cell lines perturbed pathways and in primary tissues samples including The Cancer Genome Atlas breast carcinoma samples and liver samples exposed to genotoxic carcinogens. AVAILABILITY AND IMPLEMENTATION Software for our approach is available for download at: http://www.bioconductor.org/packages/release/bioc/html/ASSIGN.html and https://github.com/wevanjohnson/ASSIGN.


Scientific Reports | 2016

A cloud-based workflow to quantify transcript-expression levels in public cancer compendia

Pj Tatlow; Stephen R. Piccolo

Public compendia of sequencing data are now measured in petabytes. Accordingly, it is infeasible for researchers to transfer these data to local computers. Recently, the National Cancer Institute began exploring opportunities to work with molecular data in cloud-computing environments. With this approach, it becomes possible for scientists to take their tools to the data and thereby avoid large data transfers. It also becomes feasible to scale computing resources to the needs of a given analysis. We quantified transcript-expression levels for 12,307 RNA-Sequencing samples from the Cancer Cell Line Encyclopedia and The Cancer Genome Atlas. We used two cloud-based configurations and examined the performance and cost profiles of each configuration. Using preemptible virtual machines, we processed the samples for as little as


BMC Medical Genomics | 2013

Genomic pathway analysis reveals that EZH2 and HDAC4 represent mutually exclusive epigenetic pathways across human cancers

Adam L. Cohen; Stephen R. Piccolo; Luis Cheng; Rafaella Soldi; Bing Han; W. Evan Johnson; Andrea Bild

0.09 (USD) per sample. As the samples were processed, we collected performance metrics, which helped us track the duration of each processing step and quantified computational resources used at different stages of sample processing. Although the computational demands of reference alignment and expression quantification have decreased considerably, there remains a critical need for researchers to optimize preprocessing steps. We have stored the software, scripts, and processed data in a publicly accessible repository (https://osf.io/gqrz9).


PLOS Biology | 2014

A Field Guide to Genomics Research

Andrea Bild; Jeffrey T. Chang; W. Evan Johnson; Stephen R. Piccolo

BackgroundAlterations in epigenetic marks, including methylation or acetylation, are common in human cancers. For many epigenetic pathways, however, direct measures of activity are unknown, making their role in various cancers difficult to assess. Gene expression signatures facilitate the examination of patterns of epigenetic pathway activation across and within human cancer types allowing better understanding of the relationships between these pathways.MethodsWe used Bayesian regression to generate gene expression signatures from normal epithelial cells before and after epigenetic pathway activation. Signatures were applied to datasets from TCGA, GEO, CaArray, ArrayExpress, and the cancer cell line encyclopedia. For TCGA data, signature results were correlated with copy number variation and DNA methylation changes. GSEA was used to identify biologic pathways related to the signatures.ResultsWe developed and validated signatures reflecting downstream effects of enhancer of zeste homolog 2(EZH2), histone deacetylase(HDAC) 1, HDAC4, sirtuin 1(SIRT1), and DNA methyltransferase 2(DNMT2). By applying these signatures to data from cancer cell lines and tumors in large public repositories, we identify those cancers that have the highest and lowest activation of each of these pathways. Highest EZH2 activation is seen in neuroblastoma, hepatocellular carcinoma, small cell lung cancer, and melanoma, while highest HDAC activity is seen in pharyngeal cancer, kidney cancer, and pancreatic cancer. Across all datasets studied, activation of both EZH2 and HDAC4 is significantly underrepresented. Using breast cancer and glioblastoma as examples to examine intrinsic subtypes of particular cancers, EZH2 activation was highest in luminal breast cancers and proneural glioblastomas, while HDAC4 activation was highest in basal breast cancer and mesenchymal glioblastoma. EZH2 and HDAC4 activation are associated with particular chromosome abnormalities: EZH2 activation with aberrations in genes from the TGF and phosphatidylinositol pathways and HDAC4 activation with aberrations in inflammatory and chemokine related genes.ConclusionGene expression patterns can reveal the activation level of epigenetic pathways. Epigenetic pathways define biologically relevant subsets of human cancers. EZH2 activation and HDAC4 activation correlate with growth factor signaling and inflammation, respectively, and represent two distinct states for cancer cells. This understanding may allow us to identify targetable drivers in these cancer subsets.


Journal of Biological Chemistry | 2015

Histone Deacetylase 6 (HDAC6) Promotes the Pro-survival Activity of 14-3-3ζ via Deacetylation of Lysines within the 14-3-3ζ Binding Pocket

Jeffrey B. Mortenson; Lisa Heppler; Courtney J. Banks; Vajira K. Weerasekara; Matthew D. Whited; Stephen R. Piccolo; William Evan Johnson; J. Will Thompson; Joshua L. Andersen

Portraying high-throughput genomics research as a wild frontier, Andrea Bild and colleagues use caricatures to highlight common pitfalls in genomic research and provide recommendations for navigating this terrain.

Collaboration


Dive into the Stephen R. Piccolo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam L. Cohen

Huntsman Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kim L. O'Neill

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge