Stephen T. Reece
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephen T. Reece.
Immunological Reviews | 2011
Anca Dorhoi; Stephen T. Reece; Stefan H. E. Kaufmann
Summary: Tuberculosis (TB) is a complex disease, and the success of the bacterium as an intracellular pathogen is the outcome of its close and longstanding coevolution with the mammalian host. The dialogue between Mycobacterium tuberculosis and the host is becoming understandable at the molecular, cellular, and tissue level. This has led to the elucidation of the (i) interaction between pattern recognition receptors and pathogen‐associated molecular patterns, (ii) cross‐talk between immune cells, and (iii) mechanisms underlying granuloma development. Disease as an eventual but not a necessary consequence of infection results from a sensitive balance between protective immunity and destructive pathology. Early events, governed largely by conserved mechanisms of host recognition, impact not only on type and course of adaptive immunity but also on lung parenchymal function. New interpretations of how these responses shape the lung environment and direct granuloma development emphasize that the disease results from pathologic consequences of non‐resolving inflammation. We review recent advances in TB research within the context of this ambitious view of TB.
European Journal of Immunology | 2012
Anca Dorhoi; Geraldine Nouailles; Sabine Jörg; Kristine Hagens; Ellen Heinemann; Lydia Pradl; Dagmar Oberbeck-Müller; Maria A. Duque-Correa; Stephen T. Reece; Jürgen Ruland; Roland Brosch; Jürg Tschopp; Olaf Gross; Stefan H. E. Kaufmann
As a hallmark of tuberculosis (TB), Mycobacterium tuberculosis (MTB) induces granulomatous lung lesions and systemic inflammatory responses during active disease. Molecular regulation of inflammation is associated with inflammasome assembly. We determined the extent to which MTB triggers inflammasome activation and how this impacts on the severity of TB in a mouse model. MTB stimulated release of mature IL‐1β in macrophages while attenuated M. bovis BCG failed to do so. Tubercle bacilli specifically activated the NLRP3 inflammasome and this propensity was strictly controlled by the virulence‐associated RD1 locus of MTB. However, Nlrp3‐deficient mice controlled pulmonary TB, a feature correlated with NLRP3‐independent production of IL‐1β in infected lungs. Our studies demonstrate that MTB activates the NLRP3 inflammasome in macrophages in an ESX‐1‐dependent manner. However, during TB, MTB promotes NLRP3‐ and caspase‐1‐independent IL‐1β release in myeloid cells recruited to lung parenchyma and thus overcomes NLRP3 deficiency in vivo in experimental models.
European Journal of Immunology | 2014
Anca Dorhoi; Vladimir Yeremeev; Geraldine Nouailles; January Weiner; Sabine Jörg; Ellen Heinemann; Dagmar Oberbeck-Müller; Julia K. Knaul; Alexis Vogelzang; Stephen T. Reece; Karin Hahnke; Hans-Joachim Mollenkopf; Volker Brinkmann; Stefan H. E. Kaufmann
General interest in the biological functions of IFN type I in Mycobacterium tuberculosis (Mtb) infection increased after the recent identification of a distinct IFN gene expression signature in tuberculosis (TB) patients. Here, we demonstrate that TB‐susceptible mice lacking the receptor for IFN I (IFNAR1) were protected from death upon aerogenic infection with Mtb. Using this experimental model to mimic primary progressive pulmonary TB, we dissected the immune processes affected by IFN I. IFNAR1 signaling did not affect T‐cell responses, but markedly altered migration of inflammatory monocytes and neutrophils to the lung. This process was orchestrated by IFNAR1 expressed on both immune and tissue‐resident radioresistant cells. IFNAR1‐driven TB susceptibility was initiated by augmented Mtb replication and in situ death events, along with CXCL5/CXCL1‐driven accumulation of neutrophils in alveoli, followed by the discrete compartmentalization of Mtb in lung phagocytes. Early depletion of neutrophils rescued TB‐susceptible mice to levels observed in mice lacking IFNAR1. We conclude that IFN I alters early innate events at the site of Mtb invasion leading to fatal immunopathology. These data furnish a mechanistic explanation for the detrimental role of IFN I in pulmonary TB and form a basis for understanding the complex roles of IFN I in chronic inflammation.
Clinical and Vaccine Immunology | 2007
Malcolm S. Duthie; Wakako Goto; Greg Ireton; Stephen T. Reece; Ludimila Paula Vaz Cardoso; Celina Maria Turchi Martelli; Mariane Martins de Araújo Stefani; Maria Nakatani; Robson Crusue de Jesus; Eduardo Martins Netto; Ma. Victoria F. Balagon; Esterlina V. Tan; Robert H. Gelber; Yumi Maeda; Masahiko Makino; Dan Hoft; Steven G. Reed
ABSTRACT Leprosy is a chronic and debilitating human disease caused by infection with the Mycobacterium leprae bacillus. Despite the marked reduction in the number of registered worldwide leprosy cases as a result of the widespread use of multidrug therapy, the number of new cases detected each year remains relatively stable. This indicates that M. leprae is still being transmitted and that, without earlier diagnosis, M. leprae infection will continue to pose a health problem. Current diagnostic techniques, based on the appearance of clinical symptoms or of immunoglobulin M (IgM) antibodies that recognize the bacterial phenolic glycolipid I, are unable to reliably identify early-stage leprosy. In this study we examine the ability of IgG within leprosy patient sera to bind several M. leprae protein antigens. As expected, multibacillary leprosy patients provided stronger responses than paucibacillary leprosy patients. We demonstrate that the geographic locations of the patients can influence the antigens they recognize but that ML0405 and ML2331 are recognized by sera from diverse regions (the Philippines, coastal and central Brazil, and Japan). A fusion construct of these two proteins (designated leprosy IDRI diagnostic 1 [LID-1]) retained the diagnostic activity of the component antigens. Upon testing against a panel of prospective sera from individuals who developed leprosy, we determined that LID-1 was capable of diagnosing leprosy 6 to 8 months before the onset of clinical symptoms. A serological diagnostic test capable of identifying and allowing treatment of early-stage leprosy could reduce transmission, prevent functional disabilities and stigmatizing deformities, and facilitate leprosy eradication.
Journal of Clinical Investigation | 2010
Stephen T. Reece; Christoph Loddenkemper; David J. Askew; Ulrike Zedler; Sandra Schommer-Leitner; Maik Stein; Fayaz Ahmad Mir; Anca Dorhoi; Hans-Joachim Mollenkopf; Gary A. Silverman; Stefan H. E. Kaufmann
The hallmark of human Mycobacterium tuberculosis infection is the presence of lung granulomas. Lung granulomas can have different phenotypes, with caseous necrosis and hypoxia present within these structures during active tuberculosis. Production of NO by the inducible host enzyme NOS2 is a key antimycobacterial defense mechanism that requires oxygen as a substrate; it is therefore likely to perform inefficiently in hypoxic regions of granulomas in which M. tuberculosis persists. Here we have used Nos2-/- mice to investigate host-protective mechanisms within hypoxic granulomas and identified a role for host serine proteases in hypoxic granulomas in determining outcome of disease. Nos2-/- mice reproduced human-like granulomas in the lung when infected with M. tuberculosis in the ear dermis. The granulomas were hypoxic and contained large amounts of the serine protease cathepsin G and clade B serine protease inhibitors (serpins). Extrinsic inhibition of serine protease activity in vivo resulted in distorted granuloma structure, extensive hypoxia, and increased bacterial growth in this model. These data suggest that serine protease activity acts as a protective mechanism within hypoxic regions of lung granulomas and present a potential new strategy for the treatment of tuberculosis.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Maria A. Duque-Correa; Anja A. Kühl; Paulo C. Rodriguez; Ulrike Zedler; Sandra Schommer-Leitner; Martin Rao; January Weiner; Robert Hurwitz; Joseph E. Qualls; George A. Kosmiadi; Peter J. Murray; Stefan H. E. Kaufmann; Stephen T. Reece
Significance Tuberculosis (TB) granulomas represent sites of both bacterial containment and tissue pathology. Macrophage killing of Mycobacterium tuberculosis (Mtb) in granulomas to contain infection must be regulated to prevent collateral tissue damage. Nitric oxide synthase-2 (NOS2) and arginase-1 (Arg1), macrophage enzymes metabolizing l-arginine, play key roles in this process. NOS2 produces reactive nitrogen intermediates to kill Mtb, whereas Arg1 regulates NOS2 activity via substrate competition. Arg1 activity could predominate in hypoxic regions of granulomas where NOS2 activity likely is suboptimal. Here we show that Arg1 plays a central role in restricting bacterial growth and restraining tissue damage within granulomas in TB and other chronic inflammatory diseases. These findings point to the modulation of Arg1 activity as a potential host-directed therapy for TB. Lung granulomas develop upon Mycobacterium tuberculosis (Mtb) infection as a hallmark of human tuberculosis (TB). They are structured aggregates consisting mainly of Mtb-infected and -uninfected macrophages and Mtb-specific T cells. The production of NO by granuloma macrophages expressing nitric oxide synthase-2 (NOS2) via l-arginine and oxygen is a key protective mechanism against mycobacteria. Despite this protection, TB granulomas are often hypoxic, and bacterial killing via NOS2 in these conditions is likely suboptimal. Arginase-1 (Arg1) also metabolizes l-arginine but does not require oxygen as a substrate and has been shown to regulate NOS2 via substrate competition. However, in other infectious diseases in which granulomas occur, such as leishmaniasis and schistosomiasis, Arg1 plays additional roles such as T-cell regulation and tissue repair that are independent of NOS2 suppression. To address whether Arg1 could perform similar functions in hypoxic regions of TB granulomas, we used a TB murine granuloma model in which NOS2 is absent. Abrogation of Arg1 expression in macrophages in this setting resulted in exacerbated lung granuloma pathology and bacterial burden. Arg1 expression in hypoxic granuloma regions correlated with decreased T-cell proliferation, suggesting that Arg1 regulation of T-cell immunity is involved in disease control. Our data argue that Arg1 plays a central role in the control of TB when NOS2 is rendered ineffective by hypoxia.
European Journal of Immunology | 2010
Tracey A. Day; Markus Koch; Geraldine Nouailles; Marc Jacobsen; George A. Kosmiadi; Delia Miekley; Stefanie Kuhlmann; Sabine Jörg; Pia Gamradt; Hans-Joachim Mollenkopf; Robert Hurwitz; Stephen T. Reece; Stefan H. E. Kaufmann; Mischo Kursar
Tuberculosis causes 2 million deaths per year, yet in most cases the immune response successfully contains the infection and prevents disease outbreak. Induced lymphoid structures associated with pulmonary granuloma are observed during tuberculosis in both humans and mice and could orchestrate host defense. To investigate whether granuloma perform lymphoid functions, mice lacking secondary lymphoid organs (SLO) were infected with Mycobacterium tuberculosis (MTB). As in WT mice, granuloma developed, exponential growth of MTB was controlled, and antigen‐specific T‐cell responses including memory T cells were generated in the absence of SLO. Moreover, adoptively transferred T cells were primed locally in lungs in a granuloma‐dependent manner. T‐cell activation was delayed in the absence of SLO, but resulted in a normal development program including protective subsets and functional recall responses that protected mice against secondary MTB infection. Our data demonstrate that protective immune responses can be generated independently of SLO during MTB infection and implicate local pulmonary T‐cell priming as a mechanism contributing to host defense.
Current Opinion in Microbiology | 2012
Stephen T. Reece; Stefan H. E. Kaufmann
The granuloma in tuberculosis (TB), referred to as the tubercle, is a lesion containing multiple cell types and is the one definite hallmark of this disease. A number of tubercle phenotypes are seen during infection yet how these contribute to development of TB remains unclear. Here we highlight recent results using diverse models of tubercle development as well as recent findings from studies of human TB in an attempt to illustrate the plasticity of the tubercle and to place it between the poles of pathology and protection. Such insights could lead to future interventions to address TB as a global health issue.
Clinical and Vaccine Immunology | 2008
Malcolm S. Duthie; Wakako Goto; Greg Ireton; Stephen T. Reece; Lucas H. Sampaio; A. B. Grassi; Ana Lucia M. Sousa; Celina Maria Turchi Martelli; Mariane Martins de Araújo Stefani; Steven G. Reed
ABSTRACT The identification of human T-cell antigens of Mycobacterium leprae could improve treatment and help to disrupt the transmission of leprosy by directing diagnosis and vaccine programs. This study screened a panel of M. leprae recombinant proteins for T-cell recall responses, measured by gamma interferon (IFN-γ) production, among leprosy patients. After initial studies using peripheral blood mononuclear cells from leprosy patients, we transitioned our studies to simple whole-blood assays (WBA), which are more applicable in field or clinical settings. T-cell responses generated in WBA using blood from individuals in Goiânia, Brazil, demonstrated that several M. leprae antigens (ML0276, ML0840, ML1623, ML2044, and 46f) elicited >0.5 IU/ml IFN-γ, and these proteins were classified as immunogenic and leprosy specific. Several of these individual antigens were recognized by cells from >60% of Brazilian paucibacillary (PB) leprosy patients, and ML0276, ML0840, ML1623, and 46f complemented each other such that 82% of PB patients had strong (>1.25 IU/ml IFN-γ) responses to at least one of these proteins. These proteins were also recognized by cells from a significant proportion of the household contacts of multibacillary leprosy patients, but in contrast, few responses were observed in active tuberculosis patients or healthy control groups from areas of endemicity. Our results indicate several potential candidate antigens which may be useful for either leprosy diagnosis or vaccination and demonstrate the utility of leprosy WBA that can be applied broadly in clinical or field settings.
Vaccine | 2011
Stephen T. Reece; Ali Nasser-Eddine; Jes Dietrich; Maik Stein; Ulrike Zedler; Sandra Schommer-Leitner; Tom H. M. Ottenhoff; Peter Andersen; Stefan H. E. Kaufmann
Bacille Calmette-Guérin (BCG) is the vaccine against tuberculosis (TB), but has varied efficacy in different geographical locations. Recombinant strategies to genetically modify the organism to enhance the quality of the immune response have aimed at improving BCG efficacy. Here we describe such a strategy using rBCGΔureC∷hly expressing defined latency-associated antigens and test this construct for long-term protection against an isolate of the Mycobacterium tuberculosis (Mtb) Beijing/W lineage. Expression of the antigens Rv2659c, Rv3407 and Rv1733c by rBCGΔureC∷hly improved long-term efficacy in both lung and spleen at day 200 post-infection after intradermal vaccination of mice. Our data support expression of Mtb latency associated antigens by rBCG to improve protection against Mtb.