Ulrike Zedler
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ulrike Zedler.
Journal of Clinical Investigation | 2010
Stephen T. Reece; Christoph Loddenkemper; David J. Askew; Ulrike Zedler; Sandra Schommer-Leitner; Maik Stein; Fayaz Ahmad Mir; Anca Dorhoi; Hans-Joachim Mollenkopf; Gary A. Silverman; Stefan H. E. Kaufmann
The hallmark of human Mycobacterium tuberculosis infection is the presence of lung granulomas. Lung granulomas can have different phenotypes, with caseous necrosis and hypoxia present within these structures during active tuberculosis. Production of NO by the inducible host enzyme NOS2 is a key antimycobacterial defense mechanism that requires oxygen as a substrate; it is therefore likely to perform inefficiently in hypoxic regions of granulomas in which M. tuberculosis persists. Here we have used Nos2-/- mice to investigate host-protective mechanisms within hypoxic granulomas and identified a role for host serine proteases in hypoxic granulomas in determining outcome of disease. Nos2-/- mice reproduced human-like granulomas in the lung when infected with M. tuberculosis in the ear dermis. The granulomas were hypoxic and contained large amounts of the serine protease cathepsin G and clade B serine protease inhibitors (serpins). Extrinsic inhibition of serine protease activity in vivo resulted in distorted granuloma structure, extensive hypoxia, and increased bacterial growth in this model. These data suggest that serine protease activity acts as a protective mechanism within hypoxic regions of lung granulomas and present a potential new strategy for the treatment of tuberculosis.
The Journal of Infectious Diseases | 2014
Alexis Vogelzang; Carolina Perdomo; Ulrike Zedler; Stefanie Kuhlmann; Robert Hurwitz; Martin Gengenbacher; Stefan H. E. Kaufmann
Bacillus Calmette-Guérin (BCG) has been used for vaccination against tuberculosis for nearly a century. Here, we analyze immunity induced by a live tuberculosis vaccine candidate, recombinant BCG ΔureC::hly vaccine (rBCG), with proven preclinical and clinical safety and immunogenicity. We pursue in-depth analysis of the endogenous mycobacteria-specific CD4+ T-cell population, comparing the more efficacious rBCG with canonical BCG to determine which T-cell memory responses are prerequisites for superior protection against tuberculosis. rBCG induced higher numbers and proportions of antigen-specific memory CD4+ T cells than BCG, with a CXCR5+CCR7+ phenotype and low expression of the effector transcription factors T-bet and Bcl-6. We found that the superior protection of rBCG, compared with BCG, correlated with higher proportions and numbers of these central memory T cells and of T follicular helper cells associated with specific antibody responses. Adoptive transfer of mycobacteria-specific central memory T cells validated their critical role in protection against pulmonary tuberculosis.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Maria A. Duque-Correa; Anja A. Kühl; Paulo C. Rodriguez; Ulrike Zedler; Sandra Schommer-Leitner; Martin Rao; January Weiner; Robert Hurwitz; Joseph E. Qualls; George A. Kosmiadi; Peter J. Murray; Stefan H. E. Kaufmann; Stephen T. Reece
Significance Tuberculosis (TB) granulomas represent sites of both bacterial containment and tissue pathology. Macrophage killing of Mycobacterium tuberculosis (Mtb) in granulomas to contain infection must be regulated to prevent collateral tissue damage. Nitric oxide synthase-2 (NOS2) and arginase-1 (Arg1), macrophage enzymes metabolizing l-arginine, play key roles in this process. NOS2 produces reactive nitrogen intermediates to kill Mtb, whereas Arg1 regulates NOS2 activity via substrate competition. Arg1 activity could predominate in hypoxic regions of granulomas where NOS2 activity likely is suboptimal. Here we show that Arg1 plays a central role in restricting bacterial growth and restraining tissue damage within granulomas in TB and other chronic inflammatory diseases. These findings point to the modulation of Arg1 activity as a potential host-directed therapy for TB. Lung granulomas develop upon Mycobacterium tuberculosis (Mtb) infection as a hallmark of human tuberculosis (TB). They are structured aggregates consisting mainly of Mtb-infected and -uninfected macrophages and Mtb-specific T cells. The production of NO by granuloma macrophages expressing nitric oxide synthase-2 (NOS2) via l-arginine and oxygen is a key protective mechanism against mycobacteria. Despite this protection, TB granulomas are often hypoxic, and bacterial killing via NOS2 in these conditions is likely suboptimal. Arginase-1 (Arg1) also metabolizes l-arginine but does not require oxygen as a substrate and has been shown to regulate NOS2 via substrate competition. However, in other infectious diseases in which granulomas occur, such as leishmaniasis and schistosomiasis, Arg1 plays additional roles such as T-cell regulation and tissue repair that are independent of NOS2 suppression. To address whether Arg1 could perform similar functions in hypoxic regions of TB granulomas, we used a TB murine granuloma model in which NOS2 is absent. Abrogation of Arg1 expression in macrophages in this setting resulted in exacerbated lung granuloma pathology and bacterial burden. Arg1 expression in hypoxic granuloma regions correlated with decreased T-cell proliferation, suggesting that Arg1 regulation of T-cell immunity is involved in disease control. Our data argue that Arg1 plays a central role in the control of TB when NOS2 is rendered ineffective by hypoxia.
Mbio | 2016
Carolina Perdomo; Ulrike Zedler; Anja A. Kühl; Laura Lozza; Leif E. Sander; Alexis Vogelzang; Stefan H. E. Kaufmann
ABSTRACT Mycobacterium bovis Bacille Calmette-Guérin (BCG) is the only licensed vaccine against tuberculosis (TB), yet its moderate efficacy against pulmonary TB calls for improved vaccination strategies. Mucosal BCG vaccination generates superior protection against TB in animal models; however, the mechanisms of protection remain elusive. Tissue-resident memory T (TRM) cells have been implicated in protective immune responses against viral infections, but the role of TRM cells following mycobacterial infection is unknown. Using a mouse model of TB, we compared protection and lung cellular infiltrates of parenteral and mucosal BCG vaccination. Adoptive transfer and gene expression analyses of lung airway cells were performed to determine the protective capacities and phenotypes of different memory T cell subsets. In comparison to subcutaneous vaccination, intratracheal and intranasal BCG vaccination generated T effector memory and TRM cells in the lung, as defined by surface marker phenotype. Adoptive mucosal transfer of these airway-resident memory T cells into naive mice mediated protection against TB. Whereas airway-resident memory CD4+ T cells displayed a mixture of effector and regulatory phenotype, airway-resident memory CD8+ T cells displayed prototypical TRM features. Our data demonstrate a key role for mucosal vaccination-induced airway-resident T cells in the host defense against pulmonary TB. These results have direct implications for the design of refined vaccination strategies. IMPORTANCE BCG remains the only licensed vaccine against TB. Parenterally administered BCG has variable efficacy against pulmonary TB, and thus, improved prevention strategies and a more refined understanding of correlates of vaccine protection are required. Induction of memory T cells has been shown to be essential for protective TB vaccines. Mimicking the natural infection route by mucosal vaccination has been known to generate superior protection against TB in animal models; however, the mechanisms of protection have remained elusive. Here we performed an in-depth analysis to dissect the immunological mechanisms associated with superior mucosal protection in the mouse model of TB. We found that mucosal, and not subcutaneous, BCG vaccination generates lung-resident memory T cell populations that confer protection against pulmonary TB. We establish a comprehensive phenotypic characterization of these populations, providing a framework for future vaccine development. BCG remains the only licensed vaccine against TB. Parenterally administered BCG has variable efficacy against pulmonary TB, and thus, improved prevention strategies and a more refined understanding of correlates of vaccine protection are required. Induction of memory T cells has been shown to be essential for protective TB vaccines. Mimicking the natural infection route by mucosal vaccination has been known to generate superior protection against TB in animal models; however, the mechanisms of protection have remained elusive. Here we performed an in-depth analysis to dissect the immunological mechanisms associated with superior mucosal protection in the mouse model of TB. We found that mucosal, and not subcutaneous, BCG vaccination generates lung-resident memory T cell populations that confer protection against pulmonary TB. We establish a comprehensive phenotypic characterization of these populations, providing a framework for future vaccine development.
The Journal of Infectious Diseases | 2009
Martin Beisiegel; Mischo Kursar; Markus Koch; Christoph Loddenkemper; Stefanie Kuhlmann; Ulrike Zedler; Manuela Stäber; Robert Hurwitz; Stefan H. E. Kaufmann
Tuberculosis (TB) remains a global health threat. Although it is generally accepted that TB results from intensive cross-talk between the host and the pathogen Mycobacterium tuberculosis, underlying mechanisms remain elusive. The first evidence of human polymorphisms related to susceptibilities to distinct M. tuberculosis lineages has been gathered. Confrontation of limited host resistance with heightened bacterial virulence forms a most hazardous combination. We investigated extreme combinations, confronting inducible nitric oxide synthase-deficient (iNOS(-/-)) and wild-type (WT) mice with 2 related M. tuberculosis strains that differ markedly in virulence, namely, the M. tuberculosis laboratory strains H37Rv and H37Ra. We provide evidence that deregulated chemokine signaling and excessive neutrophil necrosis contribute to disproportionate neutrophil influx and exacerbated TB in iNOS(-/-) mice infected with virulent M. tuberculosis (strain H37Rv), whereas resistant and susceptible mice controlled attenuated H37Ra equally well. Thus, a combination of host susceptibility and M. tuberculosis virulence determines the role of iNOS in the protection and control of inflammation.
Journal of Clinical Investigation | 2016
Ulrike Zedler; Manuela Stäber; Carolina Perdomo; Anca Dorhoi; Roland Brosch; Stefan H. E. Kaufmann
IFN-γ is a critical mediator of host defense against Mycobacterium tuberculosis (Mtb) infection. Antigen-specific CD4+ T cells have long been regarded as the main producer of IFN-γ in tuberculosis (TB), and CD4+ T cell immunity is the main target of current TB vaccine candidates. However, given the recent failures of such a TB vaccine candidate in clinical trials, strategies to harness CD4-independent mechanisms of protection should be included in future vaccine design. Here, we have reported that noncognate IFN-γ production by Mtb antigen-independent memory CD8+ T cells and NK cells is protective during Mtb infection and evaluated the mechanistic regulation of IFN-γ production by these cells in vivo. Transfer of arenavirus- or protein-specific CD8+ T cells or NK cells reduced the mortality and morbidity rates of mice highly susceptible to TB in an IFN-γ-dependent manner. Secretion of IFN-γ by these cell populations required IL-18, sensing of mycobacterial viability, Mtb protein 6-kDa early secretory antigenic target-mediated (ESAT-6-mediated) cytosolic contact, and activation of NLR family pyrin domain-containing protein 3 (NLRP3) inflammasomes in CD11c+ cell subsets. Neutralization of IL-18 abrogated protection in susceptible recipient mice that had received noncognate cells. Moreover, improved Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine-induced protection was lost in the absence of ESAT-6-dependent cytosolic contact. Our findings provide a comprehensive mechanistic framework for antigen-independent IFN-γ secretion in response to Mtb with critical implications for future intervention strategies against TB.
Vaccine | 2011
Stephen T. Reece; Ali Nasser-Eddine; Jes Dietrich; Maik Stein; Ulrike Zedler; Sandra Schommer-Leitner; Tom H. M. Ottenhoff; Peter Andersen; Stefan H. E. Kaufmann
Bacille Calmette-Guérin (BCG) is the vaccine against tuberculosis (TB), but has varied efficacy in different geographical locations. Recombinant strategies to genetically modify the organism to enhance the quality of the immune response have aimed at improving BCG efficacy. Here we describe such a strategy using rBCGΔureC∷hly expressing defined latency-associated antigens and test this construct for long-term protection against an isolate of the Mycobacterium tuberculosis (Mtb) Beijing/W lineage. Expression of the antigens Rv2659c, Rv3407 and Rv1733c by rBCGΔureC∷hly improved long-term efficacy in both lung and spleen at day 200 post-infection after intradermal vaccination of mice. Our data support expression of Mtb latency associated antigens by rBCG to improve protection against Mtb.
Frontiers in Immunology | 2014
Laura Lozza; Maura Farinacci; Marina Bechtle; Manuela Stäber; Ulrike Zedler; Andrea Baiocchini; Franca Del Nonno; Stefan H. E. Kaufmann
Human primary dendritic cells (DCs) are heterogeneous by phenotype, function, and tissue localization and distinct from inflammatory monocyte-derived DCs. Current information regarding the susceptibility and functional role of primary human DC subsets to Mycobacterium tuberculosis (Mtb) infection is limited. Here, we dissect the response of different primary DC subsets to Mtb infection. Myeloid CD11c+ cells and pDCs (C-type lectin 4C+ cells) were located in human lymph nodes (LNs) of tuberculosis (TB) patients by histochemistry. Rare CD141hi DCs (C-type lectin 9A+ cells) were also identified. Infection with live Mtb revealed a higher responsiveness of myeloid CD1c+ DCs compared to CD141hi DCs and pDCs. CD1c+ DCs produced interleukin (IL)-6, tumor necrosis factor α, and IL-1β but not IL-12p70, a cytokine important for Th1 activation and host defenses against Mtb. Yet, CD1c+ DCs were able to activate autologous naïve CD4+ T cells. By combining cell purification with fluorescence-activated cell sorting and gene expression profiling on rare cell populations, we detected in responding CD4+ T cells, genes related to effector-cytolytic functions and transcription factors associated with Th1, Th17, and Treg polarization, suggesting multifunctional properties in our experimental conditions. Finally, immunohistologic analyses revealed contact between CD11c+ cells and pDCs in LNs of TB patients and in vitro data suggest that cooperation between Mtb-infected CD1c+ DCs and pDCs favors stimulation of CD4+ T cells.
PLOS ONE | 2016
Ulrike Zedler; Manuela Stäber; Stefan H. E. Kaufmann
Infection with Mycobacterium tuberculosis (Mtb) is the leading cause of death in human immunodeficiency virus (HIV)+ individuals, particularly in Sub-Saharan Africa. Management of this deadly co-infection is a significant global health challenge that is exacerbated by the lack of efficient vaccines against both Mtb and HIV, as well as the lack of reliable and robust animal models for Mtb/HIV co-infection. Here we describe a tractable and reproducible mouse model to study the reactivation dynamics of latent Mtb infection following the loss of CD4+ T cells as it occurs in HIV-co-infected individuals. Whereas intradermally (i.d.) infected C57BL/6 mice contained Mtb within the local draining lymph nodes, depletion of CD4+ cells led to progressive systemic spread of the bacteria and induction of lung pathology. To interrogate whether reactivation of Mtb after CD4+ T cell depletion can be reversed, we employed interleukin (IL)-2/anti-IL-2 complex-mediated cell boost approaches. Although populations of non-CD4 lymphocytes, such as CD8+ memory T cells, natural killer (NK) cells and double-negative (DN) T cells significantly expanded after IL-2/anti-IL-2 complex treatment, progressive development of bacteremia and pathologic lung alterations could not be prevented. These data suggest that the failure to reverse Mtb reactivation is likely not due to anergy of the expanded cell subsets and rather indicates a limited potential for IL-2-complex-based therapies in the management of Mtb/HIV co-infection.
Infection and Immunity | 2016
Alexis Vogelzang; Laura Lozza; Stephen T. Reece; Carolina Perdomo; Ulrike Zedler; Karin Hahnke; Dagmar Oberbeck-Mueller; Anca Dorhoi; Stefan H. E. Kaufmann
ABSTRACT The neonatal Fc receptor (FcRn) extends the systemic half-life of IgG antibodies by chaperoning bound Fc away from lysosomal degradation inside stromal and hematopoietic cells. FcRn also transports IgG across mucosal barriers into the lumen, and yet little is known about how FcRn modulates immunity in the lung during homeostasis or infection. We infected wild-type (WT) and FcRn-deficient (fcgrt −/−) mice with Pseudomonas aeruginosa or Mycobacterium tuberculosis to investigate whether recycling and transport of IgG via FcRn influences innate and adaptive immunity in the lung in response to bacterial infection. We found that FcRn expression maintains homeostatic IgG levels in lung and leads to preferential secretion of low-affinity IgG ligands into the lumen. Fcgrt −/− animals exhibited no evidence of developmental impairment of innate immunity in the lung and were able to efficiently recruit neutrophils in a model of acute bacterial pneumonia. Although local humoral immunity in lung increased independently of the presence of FcRn during tuberculosis, there was nonetheless a strong impact of FcRn deficiency on local adaptive immunity. We show that the quantity and quality of IgG in airways, as well as the abundance of dendritic cells in the lung, are maintained by FcRn. FcRn ablation transiently enhanced local T cell immunity and neutrophil recruitment during tuberculosis, leading to a lower bacterial burden in lung. This novel understanding of tissue-specific modulation of mucosal IgG isotypes in the lung by FcRn sheds light on the role of mucosal IgG in immune responses in the lung during homeostasis and bacterial disease.