Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steve Albrecht is active.

Publication


Featured researches published by Steve Albrecht.


Nature Materials | 2014

Efficient charge generation by relaxed charge-transfer states at organic interfaces

Koen Vandewal; Steve Albrecht; Eric T. Hoke; Kenneth R. Graham; Johannes Widmer; Jessica D. Douglas; Marcel Schubert; William R. Mateker; Jason T. Bloking; George F. Burkhard; Alan Sellinger; Jean M. J. Fréchet; Aram Amassian; Moritz Riede; Michael D. McGehee; Dieter Neher; Alberto Salleo

Interfaces between organic electron-donating (D) and electron-accepting (A) materials have the ability to generate charge carriers on illumination. Efficient organic solar cells require a high yield for this process, combined with a minimum of energy losses. Here, we investigate the role of the lowest energy emissive interfacial charge-transfer state (CT1) in the charge generation process. We measure the quantum yield and the electric field dependence of charge generation on excitation of the charge-transfer (CT) state manifold via weakly allowed, low-energy optical transitions. For a wide range of photovoltaic devices based on polymer:fullerene, small-molecule:C60 and polymer:polymer blends, our study reveals that the internal quantum efficiency (IQE) is essentially independent of whether or not D, A or CT states with an energy higher than that of CT1 are excited. The best materials systems show an IQE higher than 90% without the need for excess electronic or vibrational energy.


Journal of the American Chemical Society | 2012

Fluorinated Copolymer PCPDTBT with enhanced open-circuit voltage and reduced recombination for highly efficient polymer solar cells

Steve Albrecht; Silvia Janietz; Wolfram Schindler; Johannes Frisch; Jona Kurpiers; Juliane Kniepert; Sahika Inal; Patrick Pingel; Konstantinos Fostiropoulos; Norbert Koch; Dieter Neher

A novel fluorinated copolymer (F-PCPDTBT) is introduced and shown to exhibit significantly higher power conversion efficiency in bulk heterojunction solar cells with PC(70)BM compared to the well-known low-band-gap polymer PCPDTBT. Fluorination lowers the polymer HOMO level, resulting in high open-circuit voltages well exceeding 0.7 V. Optical spectroscopy and morphological studies with energy-resolved transmission electron microscopy reveal that the fluorinated polymer aggregates more strongly in pristine and blended layers, with a smaller amount of additives needed to achieve optimum device performance. Time-delayed collection field and charge extraction by linearly increasing voltage are used to gain insight into the effect of fluorination on the field dependence of free charge-carrier generation and recombination. F-PCPDTBT is shown to exhibit a significantly weaker field dependence of free charge-carrier generation combined with an overall larger amount of free charges, meaning that geminate recombination is greatly reduced. Additionally, a 3-fold reduction in non-geminate recombination is measured compared to optimized PCPDTBT blends. As a consequence of reduced non-geminate recombination, the performance of optimized blends of fluorinated PCPDTBT with PC(70)BM is largely determined by the field dependence of free-carrier generation, and this field dependence is considerably weaker compared to that of blends comprising the non-fluorinated polymer. For these optimized blends, a short-circuit current of 14 mA/cm(2), an open-circuit voltage of 0.74 V, and a fill factor of 58% are achieved, giving a highest energy conversion efficiency of 6.16%. The superior device performance and the low band-gap render this new polymer highly promising for the construction of efficient polymer-based tandem solar cells.


Energy and Environmental Science | 2016

Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature

Steve Albrecht; Michael Saliba; Juan Pablo Correa Baena; Felix Lang; Lukas Kegelmann; Mathias Mews; Ludmilla Steier; Antonio Abate; Jörg Rappich; Lars Korte; Rutger Schlatmann; Mohammad Khaja Nazeeruddin; Anders Hagfeldt; Michael Grätzel; Bernd Rech

Tandem solar cells combining silicon and perovskite absorbers have the potential to outperform state-of-the-art high efficiency silicon single junction devices. However, the practical fabrication of monolithic silicon/perovskite tandem solar cells is challenging as material properties and processing requirements such as temperature restrict the device design. Here, we fabricate an 18% efficient monolithic tandem cell formed by a silicon heterojunction bottom- and a perovskite top-cell enabling a very high open circuit voltage of 1.78 V. The monolithic integration was realized via low temperature processing of the semitransparent perovskite sub-cell where an energetically aligned electron selective contact was fabricated by atomic layer deposition of tin oxide. The hole selective, transparent top contact was formed by a stack of the organic hole transport material spiro-OMeTAD, molybdenum oxide and sputtered indium tin oxide. The tandem cell design is currently limited by the photocurrent generated in the silicon bottom cell that is reduced due to reflectance losses. Based on optical modelling and first experiments, we show that these losses can be significantly reduced by combining optical optimization of the device architecture including light trapping approaches.


Journal of the American Chemical Society | 2014

Mobility-Controlled Performance of Thick Solar Cells Based on Fluorinated Copolymers

Wentao Li; Steve Albrecht; Liqiang Yang; Steffen Roland; John R. Tumbleston; Terry McAfee; Liang Yan; Mary Allison Kelly; Harald Ade; Dieter Neher; Wei You

Developing novel materials and device architectures to further enhance the efficiency of polymer solar cells requires a fundamental understanding of the impact of chemical structures on photovoltaic properties. Given that device characteristics depend on many parameters, deriving structure-property relationships has been very challenging. Here we report that a single parameter, hole mobility, determines the fill factor of several hundred nanometer thick bulk heterojunction photovoltaic devices based on a series of copolymers with varying amount of fluorine substitution. We attribute the steady increase of hole mobility with fluorine content to changes in polymer molecular ordering. Importantly, all other parameters, including the efficiency of free charge generation and the coefficient of nongeminate recombination, are nearly identical. Our work emphasizes the need to achieve high mobility in combination with strongly suppressed charge recombination for the thick devices required by mass production technologies.


Journal of Physical Chemistry Letters | 2012

On the Field Dependence of Free Charge Carrier Generation and Recombination in Blends of PCPDTBT/PC70BM: Influence of Solvent Additives

Steve Albrecht; Wolfram Schindler; Jona Kurpiers; Juliane Kniepert; James C. Blakesley; Ines Dumsch; Sybille Allard; Konstantinos Fostiropoulos; Ullrich Scherf; Dieter Neher

We have applied time-delayed collection field (TDCF) and charge extraction by linearly increasing voltage (CELIV) to investigate the photogeneration, transport, and recombination of charge carriers in blends composed of PCPDTBT/PC70BM processed with and without the solvent additive diiodooctane. The results suggest that the solvent additive has severe impacts on the elementary processes involved in the photon to collected electron conversion in these blends. First, a pronounced field dependence of the free carrier generation is found for both blends, where the field dependence is stronger without the additive. Second, the fate of charge carriers in both blends can be described with a rather high bimolecular recombination coefficients, which increase with decreasing internal field. Third, the mobility is three to four times higher with the additive. Both blends show a negative field dependence of mobility, which we suggest to cause bias-dependent recombination coefficients.


Nature Communications | 2015

Impact of charge transport on current-voltage characteristics and power-conversion efficiency of organic solar cells

Uli Würfel; Dieter Neher; Annika Spies; Steve Albrecht

This work elucidates the impact of charge transport on the photovoltaic properties of organic solar cells. Here we show that the analysis of current–voltage curves of organic solar cells under illumination with the Shockley equation results in values for ideality factor, photocurrent and parallel resistance, which lack physical meaning. Drift-diffusion simulations for a wide range of charge-carrier mobilities and illumination intensities reveal significant carrier accumulation caused by poor transport properties, which is not included in the Shockley equation. As a consequence, the separation of the quasi Fermi levels in the organic photoactive layer (internal voltage) differs substantially from the external voltage for almost all conditions. We present a new analytical model, which considers carrier transport explicitly. The model shows excellent agreement with full drift-diffusion simulations over a wide range of mobilities and illumination intensities, making it suitable for realistic efficiency predictions for organic solar cells.


Journal of Physical Chemistry Letters | 2015

Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells

Felix Lang; Marc A. Gluba; Steve Albrecht; Jörg Rappich; Lars Korte; Bernd Rech; N. H. Nickel

Perovskite solar cells with transparent contacts may be used to compensate for thermalization losses of silicon solar cells in tandem devices. This offers a way to outreach stagnating efficiencies. However, perovskite top cells in tandem structures require contact layers with high electrical conductivity and optimal transparency. We address this challenge by implementing large-area graphene grown by chemical vapor deposition as a highly transparent electrode in perovskite solar cells, leading to identical charge collection efficiencies. Electrical performance of solar cells with a graphene-based contact reached those of solar cells with standard gold contacts. The optical transmission by far exceeds that of reference devices and amounts to 64.3% below the perovskite band gap. Finally, we demonstrate a four-terminal tandem device combining a high band gap graphene-contacted perovskite top solar cell (Eg = 1.6 eV) with an amorphous/crystalline silicon bottom solar cell (Eg = 1.12 eV).


Advanced Materials | 2014

On the Efficiency of Charge Transfer State Splitting in Polymer:Fullerene Solar Cells

Steve Albrecht; Koen Vandewal; John R. Tumbleston; Florian S. U. Fischer; Jessica D. Douglas; Jean M. J. Fréchet; Sabine Ludwigs; Harald Ade; Alberto Salleo; Dieter Neher

The field dependence and yield of free charge carrier generation in polymer:fullerene blends with varying energetic offsets is not affected when the excitation energy is varied from above band-gap to direct CT state excitation. Instead, the ability of the CT state to split is dictated by the energetic offset between the relaxed CT state and the charge separated (CS) state.


Journal of Physical Chemistry Letters | 2014

Quantifying Charge Extraction in Organic Solar Cells: The Case of Fluorinated PCPDTBT

Steve Albrecht; John R. Tumbleston; Silvia Janietz; Ines Dumsch; Sybille Allard; Ullrich Scherf; Harald Ade; Dieter Neher

We introduce a new and simple method to quantify the effective extraction mobility in organic solar cells at low electric fields and charge carrier densities comparable to operation conditions under one sun illumination. By comparing steady-state carrier densities at constant illumination intensity and under open-circuit conditions, the gradient of the quasi-Fermi potential driving the current is estimated as a function of external bias and charge density. These properties are then related to the respective steady-state current to determine the effective extraction mobility. The new technique is applied to different derivatives of the well-known low-band-gap polymer PCPDTBT blended with PC70BM. We show that the slower average extraction due to lower mobility accounts for the moderate fill factor when solar cells are fabricated with mono- or difluorinated PCPDTBT. This lower extraction competes with improved generation and reduced nongeminate recombination, rendering the monofluorinated derivative the most efficient donor polymer.


Journal of Optics | 2016

Towards optical optimization of planar monolithic perovskite/silicon-heterojunction tandem solar cells

Steve Albrecht; Michael Saliba; Juan-Pablo Correa-Baena; Klaus Jäger; Lars Korte; Anders Hagfeldt; Michael Grätzel; Bernd Rech

Combining inorganic–organic perovskites and crystalline silicon into a monolithic tandem solar cell has recently attracted increased attention due to the high efficiency potential of this cell architecture. Promising results with published efficiencies above 21% have been reported so far. To further increase the device performance, optical optimizations enabling device related guidelines are highly necessary. Here we experimentally show the optical influence of the ITO thickness in the interconnecting layer and fabricate an efficient monolithic tandem cell with a reduced ITO layer thickness that shows slightly improved absorption within the silicon sub-cell and a stabilized power output of 17%. Furthermore we present detailed optical simulations on experimentally relevant planar tandem stacks to give practical guidelines to reach efficiencies above 25%. By optimizing the thickness of all functional and the perovskite absorber layers, together with the optimization of the perovskite band-gap, we present a tandem stack that can yield ca 17.5 mA cm− 2 current in both sub-cells at a perovskite band-gap of 1.73 eV including losses from reflection and parasitic absorption. Assuming that the higher band-gap of the perovskite absorber directly translates into a higher open circuit voltage, the perovskite sub-cell should be able to reach a value of 1.3 V. With that, realistic efficiencies above 28% are within reach for planar monolithic tandem cells in which the thickness of the perovskite top-cell and the perovskite band-gap are highly optimized. When applying light trapping schemes such as textured surfaces and by reducing the parasitic absorption of the functional layers, for example in spiro-OMeTAD, this monolithic tandem can overcome 30% power conversion efficiency.

Collaboration


Dive into the Steve Albrecht's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernd Rech

Helmholtz-Zentrum Berlin

View shared research outputs
Top Co-Authors

Avatar

Lars Korte

Helmholtz-Zentrum Berlin

View shared research outputs
Top Co-Authors

Avatar

Felix Lang

Helmholtz-Zentrum Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klaus Jäger

Helmholtz-Zentrum Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ines Dumsch

University of Wuppertal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge