Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick M. Nolan is active.

Publication


Featured researches published by Patrick M. Nolan.


Nature Genetics | 2000

A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse.

Patrick M. Nolan; Jo Peters; Mark Strivens; Derek Rogers; Jim J. Hagan; Nigel K. Spurr; Ian C. Gray; Lucie Vizor; Debra Brooker; Elaine Whitehill; Rebecca Washbourne; Tertius Hough; Simon Greenaway; Mazda Hewitt; Xinhong Liu; Stefan L. McCormack; Karen Pickford; Rachael Selley; Christine A. Wells; Zuzanna Tymowska-Lalanne; Phil Roby; Peter H. Glenister; Claire E. Thornton; Caroline Thaung; Julie-Anne Stevenson; Ruth M. Arkell; Philomena Mburu; Rachel E. Hardisty; Amy E. Kiernan; Alexandra Erven

As the human genome project approaches completion, the challenge for mammalian geneticists is to develop approaches for the systematic determination of mammalian gene function. Mouse mutagenesis will be a key element of studies of gene function. Phenotype-driven approaches using the chemical mutagen ethylnitrosourea (ENU) represent a potentially efficient route for the generation of large numbers of mutant mice that can be screened for novel phenotypes. The advantage of this approach is that, in assessing gene function, no a priori assumptions are made about the genes involved in any pathway. Phenotype-driven mutagenesis is thus an effective method for the identification of novel genes and pathways. We have undertaken a genome-wide, phenotype-driven screen for dominant mutations in the mouse. We generated and screened over 26,000 mice, and recovered some 500 new mouse mutants. Our work, along with the programme reported in the accompanying paper, has led to a substantial increase in the mouse mutant resource and represents a first step towards systematic studies of gene function in mammalian genetics.


Current Biology | 2003

Mutation of Celsr1 Disrupts Planar Polarity of Inner Ear Hair Cells and Causes Severe Neural Tube Defects in the Mouse

John A. Curtin; Elizabeth Quint; Vicky Tsipouri; Ruth M. Arkell; Bruce Cattanach; Andrew J. Copp; Deborah J. Henderson; Nigel K. Spurr; Philip Stanier; Elizabeth M. C. Fisher; Patrick M. Nolan; Karen P. Steel; Steve D.M. Brown; Ian C. Gray; Jennifer N. Murdoch

We identified two novel mouse mutants with abnormal head-shaking behavior and neural tube defects during the course of independent ENU mutagenesis experiments. The heterozygous and homozygous mutants exhibit defects in the orientation of sensory hair cells in the organ of Corti, indicating a defect in planar cell polarity. The homozygous mutants exhibit severe neural tube defects as a result of failure to initiate neural tube closure. We show that these mutants, spin cycle and crash, carry independent missense mutations within the coding region of Celsr1, encoding a large protocadherin molecule [1]. Celsr1 is one of three mammalian homologs of Drosophila flamingo/starry night, which is essential for the planar cell polarity pathway in Drosophila together with frizzled, dishevelled, prickle, strabismus/van gogh, and rhoA. The identification of mouse mutants of Celsr1 provides the first evidence for the function of the Celsr family in planar cell polarity in mammals and further supports the involvement of a planar cell polarity pathway in vertebrate neurulation.


Nature Genetics | 2010

Overexpression of Fto leads to increased food intake and results in obesity

Chris Church; Lee Moir; Fiona McMurray; Christophe Girard; Gareth Banks; Lydia Teboul; Sara Wells; Jens C. Brüning; Patrick M. Nolan; Frances M. Ashcroft; Roger D. Cox

Genome-wide association studies have identified SNPs within FTO, the human fat mass and obesity–associated gene, that are strongly associated with obesity. Individuals homozygous for the at-risk rs9939609 A allele weigh, on average, ∼3 kg more than individuals with the low-risk T allele. Mice that lack FTO function and/or Fto expression display increased energy expenditure and a lean phenotype. We show here that ubiquitous overexpression of Fto leads to a dose-dependent increase in body and fat mass, irrespective of whether mice are fed a standard or a high-fat diet. Our results suggest that increased body mass results primarily from increased food intake. Mice with increased Fto expression on a high-fat diet develop glucose intolerance. This study provides the first direct evidence that increased Fto expression causes obesity in mice.


Cell | 2007

Mutations in α-Tubulin Cause Abnormal Neuronal Migration in Mice and Lissencephaly in Humans

David A. Keays; Guoling Tian; Karine Poirier; Guo-Jen Huang; Christian Siebold; James Cleak; Peter L. Oliver; Martin Fray; Robert J. Harvey; Zoltán Molnár; Maria Carmen Piñon; Neil Dear; William Valdar; Steve D.M. Brown; Kay E. Davies; J. Nicholas P. Rawlins; Nicholas J. Cowan; Patrick M. Nolan; Jamel Chelly; Jonathan Flint

Summary The development of the mammalian brain is dependent on extensive neuronal migration. Mutations in mice and humans that affect neuronal migration result in abnormal lamination of brain structures with associated behavioral deficits. Here, we report the identification of a hyperactive N-ethyl-N-nitrosourea (ENU)-induced mouse mutant with abnormalities in the laminar architecture of the hippocampus and cortex, accompanied by impaired neuronal migration. We show that the causative mutation lies in the guanosine triphosphate (GTP) binding pocket of α-1 tubulin (Tuba1) and affects tubulin heterodimer formation. Phenotypic similarity with existing mouse models of lissencephaly led us to screen a cohort of patients with developmental brain anomalies. We identified two patients with de novo mutations in TUBA3, the human homolog of Tuba1. This study demonstrates the utility of ENU mutagenesis in the mouse as a means to discover the basis of human neurodevelopmental disorders.


Current Biology | 2008

Impaired Synaptic Plasticity and Motor Learning in Mice with a Point Mutation Implicated in Human Speech Deficits

Matthias Groszer; David A. Keays; Robert M. J. Deacon; Joseph P. de Bono; Shweta Prasad-Mulcare; Simone Gaub; Muriel G. Baum; Catherine A. French; Jérôme Nicod; Julie A. Coventry; Wolfgang Enard; Martin Fray; Steve D.M. Brown; Patrick M. Nolan; Svante Pääbo; Keith M. Channon; Rui M. Costa; Jens Eilers; Günter Ehret; J. Nicholas P. Rawlins; Simon E. Fisher

Summary The most well-described example of an inherited speech and language disorder is that observed in the multigenerational KE family, caused by a heterozygous missense mutation in the FOXP2 gene [1]. Affected individuals are characterized by deficits in the learning and production of complex orofacial motor sequences underlying fluent speech and display impaired linguistic processing for both spoken and written language [2]. The FOXP2 transcription factor is highly similar in many vertebrate species, with conserved expression in neural circuits related to sensorimotor integration and motor learning [3, 4]. In this study, we generated mice carrying an identical point mutation to that of the KE family, yielding the equivalent arginine-to-histidine substitution in the Foxp2 DNA-binding domain. Homozygous R552H mice show severe reductions in cerebellar growth and postnatal weight gain but are able to produce complex innate ultrasonic vocalizations. Heterozygous R552H mice are overtly normal in brain structure and development. Crucially, although their baseline motor abilities appear to be identical to wild-type littermates, R552H heterozygotes display significant deficits in species-typical motor-skill learning, accompanied by abnormal synaptic plasticity in striatal and cerebellar neural circuits.


Physiological Genomics | 2008

Reliability, robustness, and reproducibility in mouse behavioral phenotyping: a cross-laboratory study.

Silvia Mandillo; Valter Tucci; Sabine M. Hölter; Hamid Meziane; Mumna Al Banchaabouchi; Magdalena Kallnik; Heena V. Lad; Patrick M. Nolan; Abdel-Mouttalib Ouagazzal; Emma L. Coghill; Karin Gale; Elisabetta Golini; Sylvie Jacquot; Wojtek Krezel; Andy Parker; Fabrice Riet; Ilka Schneider; Daniela Marazziti; Johan Auwerx; Steve D.M. Brown; Pierre Chambon; Nadia Rosenthal; Glauco P. Tocchini-Valentini; Wolfgang Wurst

Establishing standard operating procedures (SOPs) as tools for the analysis of behavioral phenotypes is fundamental to mouse functional genomics. It is essential that the tests designed provide reliable measures of the process under investigation but most importantly that these are reproducible across both time and laboratories. For this reason, we devised and tested a set of SOPs to investigate mouse behavior. Five research centers were involved across France, Germany, Italy, and the UK in this study, as part of the EUMORPHIA program. All the procedures underwent a cross-validation experimental study to investigate the robustness of the designed protocols. Four inbred reference strains (C57BL/6J, C3HeB/FeJ, BALB/cByJ, 129S2/SvPas), reflecting their use as common background strains in mutagenesis programs, were analyzed to validate these tests. We demonstrate that the operating procedures employed, which includes open field, SHIRPA, grip-strength, rotarod, Y-maze, prepulse inhibition of acoustic startle response, and tail flick tests, generated reproducible results between laboratories for a number of the test output parameters. However, we also identified several uncontrolled variables that constitute confounding factors in behavioral phenotyping. The EUMORPHIA SOPs described here are an important start-point for the ongoing development of increasingly robust phenotyping platforms and their application in large-scale, multicentre mouse phenotyping programs.


PLOS Genetics | 2008

When Clocks Go Bad: Neurobehavioural Consequences of Disrupted Circadian Timing

Alun R. Barnard; Patrick M. Nolan

Progress in unravelling the cellular and molecular basis of mammalian circadian regulation over the past decade has provided us with new avenues through which we can explore central nervous system disease. Deteriorations in measurable circadian output parameters, such as sleep/wake deficits and dysregulation of circulating hormone levels, are common features of most central nervous system disorders. At the core of the mammalian circadian system is a complex of molecular oscillations within the hypothalamic suprachiasmatic nucleus. These oscillations are modifiable by afferent signals from the environment, and integrated signals are subsequently conveyed to remote central neural circuits where specific output rhythms are regulated. Mutations in circadian genes in mice can disturb both molecular oscillations and measurable output rhythms. Moreover, systematic analysis of these mutants indicates that they can express an array of abnormal behavioural phenotypes that are intermediate signatures of central nervous system disorders. Furthermore, the response of these mutants to psychoactive drugs suggests that clock genes can modify a number of the brain’s critical neurotransmitter systems. This evidence has led to promising investigations into clock gene polymorphisms in psychiatric disease. Preliminary indications favour the systematic investigation of the contribution of circadian genes to central nervous system disease.


Proceedings of the National Academy of Sciences of the United States of America | 2009

A point mutation in TRPC3 causes abnormal Purkinje cell development and cerebellar ataxia in moonwalker mice

Esther B. E. Becker; Peter L. Oliver; Maike D. Glitsch; Gareth Banks; Francesca Achilli; Andrea Hardy; Patrick M. Nolan; Elizabeth M. C. Fisher; Kay E. Davies

The hereditary ataxias are a complex group of neurological disorders characterized by the degeneration of the cerebellum and its associated connections. The molecular mechanisms that trigger the loss of Purkinje cells in this group of diseases remain incompletely understood. Here, we report a previously undescribed dominant mouse model of cerebellar ataxia, moonwalker (Mwk), that displays motor and coordination defects and loss of cerebellar Purkinje cells. Mwk mice harbor a gain-of-function mutation (T635A) in the Trpc3 gene encoding the nonselective transient receptor potential cation channel, type C3 (TRPC3), resulting in altered TRPC3 channel gating. TRPC3 is highly expressed in Purkinje cells during the phase of dendritogenesis. Interestingly, growth and differentiation of Purkinje cell dendritic arbors are profoundly impaired in Mwk mice. Our findings define a previously unknown role for TRPC3 in both dendritic development and survival of Purkinje cells, and provide a unique mechanism underlying cerebellar ataxia.


Mammalian Genome | 2000

Implementation of a large-scale ENU mutagenesis program: towards increasing the mouse mutant resource

Patrick M. Nolan; Jo Peters; Lucie Vizor; Mark Strivens; Rebecca Washbourne; Tertius Hough; Christine A. Wells; Peter H. Glenister; Claire E. Thornton; Jo Martin; Elizabeth M. C. Fisher; Derek Rogers; Jim J. Hagan; Charlie Reavill; Ian C. Gray; John Wood; Nigel K. Spurr; Mick Browne; Sohaila Rastan; Jackie Hunter; Steve D.M. Brown

Abstract. Systematic approaches to mouse mutagenesis will be vital for future studies of gene function. We have begun a major ENU mutagenesis program incorporating a large genome-wide screen for dominant mutations. Progeny of ENU-mutagenized mice are screened for visible defects at birth and weaning, and at 5 weeks of age by using a systematic and semi-quantitative screening protocol—SHIRPA. Following this, mice are screened for abnormal locomotor activity and for deficits in prepulse inhibition of the acoustic startle response. Moreover, in the primary screen, blood is collected from mice and subjected to a comprehensive clinical biochemical analysis. Subsequently, secondary and tertiary screens of increasing complexity can be used on animals demonstrating deficits in the primary screen. Frozen sperm is archived from all the male mice passing through the screen. In addition, tail tips are stored for DNA. Overall, the program will provide an extensive new resource of mutant and phenotype data to the mouse and human genetics communities at large. The challenge now is to employ the expanding mouse mutant resource to improve the mutant map of the mouse. An improved mutant map of the mouse will be an important asset in exploiting the growing gene map of the mouse and assisting with the identification of genes underlying novel mutations—with consequent benefits for the analysis of gene function and the identification of novel pathways.


International Journal of Obesity | 2015

Social jetlag, obesity and metabolic disorder: investigation in a cohort study

Michael J. Parsons; Terrie E. Moffitt; Alice M. Gregory; Sidra Goldman-Mellor; Patrick M. Nolan; Richie Poulton; Avshalom Caspi

Background:Obesity is one of the leading causes of preventable death worldwide. Circadian rhythms are known to control both sleep timing and energy homeostasis, and disruptions in circadian rhythms have been linked with metabolic dysfunction and obesity-associated disease. In previous research, social jetlag, a measure of chronic circadian disruption caused by the discrepancy between our internal versus social clocks, was associated with elevated self-reported body mass index, possibly indicative of a more generalized association with obesity and metabolic dysfunction.Methods:We studied participants from the population-representative Dunedin Longitudinal Study (N=1037) to determine whether social jetlag was associated with clinically assessed measurements of metabolic phenotypes and disease indicators for obesity-related disease, specifically, indicators of inflammation and diabetes.Results:Our analysis was restricted to N=815 non-shift workers in our cohort. Among these participants, we found that social jetlag was associated with numerous clinically assessed measures of metabolic dysfunction and obesity. We distinguished between obese individuals who were metabolically healthy versus unhealthy, and found higher social jetlag levels in metabolically unhealthy obese individuals. Among metabolically unhealthy obese individuals, social jetlag was additionally associated with elevated glycated hemoglobin and an indicator of inflammation.Conclusions:The findings are consistent with the possibility that ‘living against our internal clock’ may contribute to metabolic dysfunction and its consequences. Further research aimed at understanding that the physiology and social features of social jetlag may inform obesity prevention and have ramifications for policies and practices that contribute to increased social jetlag, such as work schedules and daylight savings time.

Collaboration


Dive into the Patrick M. Nolan's collaboration.

Top Co-Authors

Avatar

Gareth Banks

University College London

View shared research outputs
Top Co-Authors

Avatar

Valter Tucci

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara Wells

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ines Heise

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar

Lucie Vizor

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar

Michael H. Hastings

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Michelle Simon

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge