Steve J. Dinardo
California Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steve J. Dinardo.
IEEE Transactions on Geoscience and Remote Sensing | 2002
Eni G. Njoku; William J. Wilson; Simon H. Yueh; Steve J. Dinardo; Fuk K. Li; Thomas J. Jackson; V. Lakshmi; John D. Bolten
Data were acquired by the Passive and Active L- and S-band airborne sensor (PALS) during the 1999 Southern Great Plains (SGP99) experiment in Oklahoma to study remote sensing of soil moisture in vegetated terrain using low-frequency microwave radiometer and radar measurements. The PALS instrument measures radiometric brightness temperature and radar backscatter at L- and S-band frequencies with multiple polarizations and approximately equal spatial resolutions. The data acquired during SGP99 provide information on the sensitivities of multichannel low-frequency passive and active measurements to soil moisture for vegetation conditions including bare, pasture, and crop surface cover with field-averaged vegetation water contents mainly in the 0-2.5 kg m/sup -2/ range. Precipitation occurring during the experiment provided an opportunity to observe wetting and drying surface conditions. Good correlations with soil moisture were observed in the radiometric channels. The 1.41-GHz horizontal-polarization channel showed the greatest sensitivity to soil moisture over the range of vegetation observed. For the fields sampled, a radiometric soil moisture retrieval accuracy of 2.3% volumetric was obtained. The radar channels showed significant correlation with soil moisture for some individual fields, with greatest sensitivity at 1.26-GHz vertical copolarized channel. However, variability in vegetation cover degraded the radar correlations for the combined field data. Images generated from data collected on a sequence of flight lines over the watershed region showed similar patterns of soil moisture change in the radiometer and radar responses. This indicates that under vegetated conditions for which soil moisture estimates may not be feasible using current radar algorithms, the radar measurements nevertheless show a response to soil moisture change, and they can provide useful information on the spatial and temporal variability of soil moisture. An illustration of the change detection approach is given.
IEEE Transactions on Geoscience and Remote Sensing | 2007
Alan B. Tanner; William J. Wilson; Bjorn H. Lambrigsten; Steve J. Dinardo; Shannon T. Brown; Pekka Kangaslahti; T. Gaier; Christopher S. Ruf; Steven Gross; Boon Lim; Stephen B. Musko; S. A. Rogacki; Jeff Piepmeier
The design, error budget, and preliminary test results of a 50-56-GHz synthetic aperture radiometer demonstration system are presented. The instrument consists of a fixed 24-element array of correlation interferometers and is capable of producing calibrated images with 1deg spatial resolution within a 17deg wide field of view. This system has been built to demonstrate a performance and a design which can be scaled to a much larger geostationary Earth imager. As a baseline, such a system would consist of about 300 elements and would be capable of providing contiguous full hemispheric images of the Earth with 1 K of radiometric precision and 50-km spatial resolution. An error budget is developed around this goal and then tested with the demonstrator system. Errors are categorized as either scaling (i.e., complex gain) or additive (noise and bias) errors. Sensitivity to gain and/or phase error is generally proportional to the magnitude of the expected visibility, which is high only in the shortest baselines of the array, based on model simulations of the Earth as viewed from geostationary Earth orbit. Requirements range from approximately 0.5% and 0.3deg of amplitude and phase uncertainty, respectively, for the closest spacings at the center of the array, to about 4% and 2.5deg for the majority of the array. The latter requirements are demonstrated with our instrument using relatively simple references and antenna models, and by relying on the intrinsic stability and efficiency of the system. The 0.5% requirement (for the short baselines) is met by measuring the detailed spatial response (e.g., on the antenna range) and by using an internal noise diode reference to stabilize the response. This result suggests a hybrid image synthesis algorithm in which long baselines are processed by a fast Fourier transform and the short baselines are processed by a more precise (G-matrix) algorithm which can handle small anomalies among antenna and receiver responses. Visibility biases and other additive errors must be below about 1.5 mK on average, regardless of baseline. The bias requirement is largely met with a phase-shifting scheme applied to the local oscillator distribution of our demonstration system. Low mutual coupling among the horn antennas of our design is also critical to minimize the biases caused by crosstalk of receiver noise. Performance is validated by a three-way comparison between interference fringes measured on the antenna range, solar transit observations, and the system model.
IEEE Transactions on Geoscience and Remote Sensing | 2010
Simon H. Yueh; Steve J. Dinardo; Alexander G. Fore; Fuk K. Li
L-band microwave backscatter and brightness temperature of sea surfaces acquired using the Passive/Active L-band Sensor during the High Ocean Wind campaign are reported in terms of their dependence on ocean surface wind speed and direction. We find that the L-band VV, HH, and HV radar backscatter data increase by 6-7 dB from 5 to 25 m/s wind speed at a 45° incidence angle. The data suggest the validity of Phased Array type L-band Synthetic Aperture Radar (PALSAR) HH model function between 5 and 15 m/s wind speeds, but show that the extrapolation of PALSAR model at above 20 m/s wind speeds overpredicts A0 and a1 coefficients. There is wind direction dependence in the radar backscatter with about 4 dB differences between upwind and crosswind observations at 24 m/s wind speed for VV and HH. The passive brightness temperatures show about a 5-K change for TV and a 7-K change for TH for a wind speed increasing from 5 to 25 m/s. Circle flight data suggest a wind direction response of about 1-2 K in TV and TH at 14 and 24 m/s wind speeds. The L-band microwave data show excellent linear correlation with the surface wind speed with a correlation better than 0.95. The results support the use of L-band radar data for estimating the wind-driven excess brightness temperature of sea surfaces. The data also support the applications of L-band microwave signals for high-resolution (kilometer scale) observation of ocean surface winds under high wind conditions (10-28 m/s).
IEEE Transactions on Geoscience and Remote Sensing | 2009
Simon H. Yueh; Steve J. Dinardo; Ahmed Akgiray; Richard D. West; Donald W. Cline; Kelly Elder
Characteristics of the Ku-band polarimetric scatterometer (POLSCAT) data acquired from five sets of aircraft flights in the winter months of 2006-2008 for the second Cold Land Processes Experiment (CLPX-II) in Colorado are described in this paper. The data showed the response of the Ku-band radar echoes to snowpack changes for various types of background vegetation in the study site in north central Colorado. We observed about 0.15-0.5-dB increases in backscatter for every 1 cm of snow-water-equivalent (SWE) accumulation for areas with short vegetation (sagebrush and pasture). The region with the smaller amount of biomass, signified by the backscatter in November, seemed to have the stronger backscatter response to SWE in decibels. The data also showed the impact of surface hoar growth and freeze/thaw cycles, which created large snow-grain sizes, ice crust layers, and ice lenses and consequently increased the radar signals by a few decibels. The copolarized HH/VV backscatter ratio seems to indicate double-bounce scattering between the ground surface and snow or vegetation. The cross-polarized backscatter [vertical-horizontal (VH)] showed not only the influence of vegetation but also the strong response to snow accumulation. The observed HV/VV ratio suggests the importance of multiple scattering or nonspherical scattering geometry of snow grain in the dense-media radiative transfer scattering model. Comparison of the POLSCAT and QuikSCAT data was made and confirmed the effects of mixed terrain covers in the coarse-resolution QuikSCAT data.
IEEE Antennas and Propagation Magazine | 2006
Y. Rahmat-Samil; Keerti S. Kona; Majid Manteghi; Simon H. Yueh; William J. Wilson; Steve J. Dinardo; Don Hunter
The main motivation for this paper is to discuss the development of a novel compact and light-weight dual-frequency, dual linearly polarized, high-efficiency, stacked-patch microstrip-array antenna for use in standalone aircraft-based remote sensing applications. Results from simulation, fabrication, and testing of a sixteen-element stacked-patch array antenna, optimized for an L-band frequency of operation, are presented. The design center frequencies were 1.26 GHz and 1.413 GHz with 10 MHz and 25 MHz bandwidths in each band, respectively. Due to the large number of design parameters and demanding design requirements of beam-efficiency, sidelobe levels, and polarization characteristics, particle-swarm optimization (PSO) and finite-difference time-domain (FDTD) simulations were used for synthesis and analysis. Cancellation techniques, based on symmetry, were applied to the antenna ports, with a custom-built feed network to reduce cross polarization. Simulations and measurement results from a spherical near-field test facility confirmed excellent performance of the array configuration, with a beam efficiency of greater than 90%, isolation better than -35 dB, and cross polarization in the main beam of the array better than -40 dB. From the sixteen-element array simulations and experimental verifications, one of the objectives of the present study is to suggest the possibility of using customized dual-frequency, dual-polarized arrays as potential feeds for reflectors to replace the traditionally used conical horns for future soil-moisture and sea-salinity missions
Geophysical Research Letters | 2016
Colm Sweeney; E. J. Dlugokencky; Charles E. Miller; Steven C. Wofsy; Anna Karion; Steve J. Dinardo; Rachel Chang; J. B. Miller; Lori Bruhwiler; Andrew M. Crotwell; Tim Newberger; Kathryn McKain; Robert S. Stone; Sonja Wolter; Patricia E. Lang; Pieter P. Tans
Continuous measurements of atmospheric methane (CH4) mole fractions measured by NOAAs Global Greenhouse Gas Reference Network in Barrow, AK (BRW), show strong enhancements above background values when winds come from the land sector from July to December from 1986 to 2015, indicating that emissions from arctic tundra continue through autumn and into early winter. Twenty-nine years of measurements show little change in seasonal mean land sector CH4 enhancements, despite an increase in annual mean temperatures of 1.2 ± 0.8°C/decade (2σ). The record does reveal small increases in CH4 enhancements in November and December after 2010 due to increased late-season emissions. The lack of significant long-term trends suggests that more complex biogeochemical processes are counteracting the observed short-term (monthly) temperature sensitivity of 5.0 ± 3.6 ppb CH4/°C. Our results suggest that even the observed short-term temperature sensitivity from the Arctic will have little impact on the global atmospheric CH4 budget in the long term if future trajectories evolve with the same temperature sensitivity.
IEEE Geoscience and Remote Sensing Letters | 2015
Andreas Colliander; Thomas J. Jackson; Heather McNairn; Seth L. Chazanoff; Steve J. Dinardo; Barron Latham; Ian O'Dwyer; William Chun; Simon H. Yueh; Eni G. Njoku
In this letter, it is shown that spaceborne observations made by the European Space Agencys Soil Moisture and Ocean Salinity (SMOS) satellite agreed closely with the Passive Active L-band System (PALS) brightness temperature acquisitions during the Soil Moisture Active Passive (SMAP) Validation Experiment 2012. The difference between the SMOS and PALS measurements was less than 5 K and 6 K for vertical and horizontal polarizations, respectively, over the relatively homogeneous agricultural areas. These values are less than the SMOS subpixel variability determined from the PALS measurement. This result demonstrated that the measurements obtained in the experiment are scalable to spaceborne brightness temperature observations, are representative of the expected SMAP observations, and will be of value in the development of soil moisture algorithms for spaceborne missions.
IEEE Transactions on Geoscience and Remote Sensing | 2011
James Park; Joel T. Johnson; Ninoslav Majurec; Noppasin Niamsuwan; Jeffrey R. Piepmeier; Priscilla N. Mohammed; Christopher S. Ruf; Sidharth Misra; Simon H. Yueh; Steve J. Dinardo
Statistics of radio frequency interference (RFI) observed in the band 1398-1422 MHz during an airborne campaign in the United States are reported for use in analysis and forecasting of L-band RFI for microwave radiometry. The observations were conducted from September to October 2008, and included approximately 92 h of flight time, of which approximately 20 h of “transit” or dedicated RFI observing flights are used in compiling the statistics presented. The observations used include outbound and return flights from Colorado to Maryland, as well as RFI surveys over large cities. The Passive Active L-Band Sensor (PALS) radiometer of NASA Jet Propulsion Laboratory augmented by three dedicated RFI observing systems was used in these observations. The complete system as well as the associated RFI characterization approaches are described, along with the resulting RFI statistical information and examinations of specific RFI sources. The results show that RFI in the protected L-band spectrum is common over North America, although the resulting interference when extrapolated to satellite observations will appear as “low-level” corruption that will be difficult to detect for traditional radiometer systems.
international geoscience and remote sensing symposium | 2008
Simon H. Yueh; Steve J. Dinardo; Steven Chan; Eni G. Njoku; Thomas J. Jackson; Rajat Bindlish
This article describes the upgraded PALS instrument and the characteristics of data acquired from the Cloud Land Atmospheric Interaction Campaign (CLASIC) 2007. The data acquired over lake passes were used to remove the radiometer calibration bias. The calibrated radiometer data showed significant consistency with the L-band land emission model for soil surfaces published in the literature. We observed significant temporal (days) changes of a few dB in the radar data. The change of radar backscatter appeared to correlate well with the change of in situ soil moisture or the soil moisture data derived from the PALS dual-polarized brightness temperatures. The radar vegetation index also correlated well with the vegetation opacity estimated from the radiometer data. The preliminary analyses suggest complementary information contained in the surface emissivity and backscatter signatures for the retrieval of soil moisture and vegetation water content.
IEEE Transactions on Geoscience and Remote Sensing | 2004
William J. Wilson; Simon H. Yueh; Steve J. Dinardo; Fuk K. Li
L-band radiometer brightness temperature measurements of a saltwater pond were made as a function of salinity and temperature. A precision L-band radiometer with stability better than 0.1 K per day was used for these measurements. The L-band measurements are in good agreement with three dielectric constant models over a temperature range from 8/spl deg/C to 32/spl deg/C and a salinity range from 25-40 psu. Based on this experiment, these dielectric models will provide an excellent basis for the algorithm development and design of the future National Aeronautics and Space Administration Aquarius satellite mission.