Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher S. Ruf is active.

Publication


Featured researches published by Christopher S. Ruf.


IEEE Transactions on Geoscience and Remote Sensing | 1988

Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth

Christopher S. Ruf; Calvin T. Swift; Alan B. Tanner; D.M. Le Vine

Interferometric aperture synthesis is presented as an alternative to real aperture measurements of the Earths brightness temperature from low Earth orbit. The signal-to-noise performance of a single interferometric measurement is considered, and the noise characteristics of the brightness temperature image produced from the interferometer measurements are discussed. The sampling requirements of the measurements and the resulting effects of the noise in the measurements on the image are described. The specific case of the electronically steered thinned array radiometer (ESTAR) currently under construction is examined. The ESTAR prototype is described in detail sufficient to permit a performance evaluation of its spatial and temperature resolution. Critical aspects of an extension of the ESTAR sensor to a larger spaceborne system are considered. Of particular important are the number and placement of antenna elements in the imaging array. >


IEEE Transactions on Geoscience and Remote Sensing | 2006

RFI detection and mitigation for microwave radiometry with an agile digital detector

Christopher S. Ruf; Steven Gross; Sidharth Misra

A new type of microwave radiometer detector has been developed that is capable of identifying high and low levels of radio-frequency interference (RFI) and of reducing or eliminating its effect on the measured brightness temperatures. High-level, localized RFI can be easily identified by its unnatural appearance in brightness temperature imagery. Low-level or persistent RFI can be much more difficult to identify and filter out. The agile digital detector (ADD) can discriminate between RFI and natural thermal emission signals by directly measuring higher order moments of the signal than the variance that is traditionally measured. After detection, the ADD then uses spectral filtering methods to selectively remove the RFI. ADD performance is experimentally verified in controlled laboratory tests and in the field near a commercial air traffic control radar. High-level RFI is easily identified and removed. Very low level RFI contamination, with power levels as low as the radiometric measurement uncertainty of the radiometer, is also shown to be reliably detected and removed.


IEEE Transactions on Geoscience and Remote Sensing | 2000

Detection of calibration drifts in spaceborne microwave radiometers using a vicarious cold reference

Christopher S. Ruf

The coldest possible brightness temperatures observed by a downward-looking microwave radiometer from space are often produced by calm oceans under cloud-free skies and very low humidity. This set of conditions tends to occur with sufficient regularity that an orbiting radiometer will accumulate a useful number of observations within a period of a few days to weeks. Histograms of the radiometers coldest measurements provide an anchor point against which very small drifts in absolute calibration can be detected. This technique is applied to the TOPEX microwave radiometer (TMR), and a statistically significant drift of several tenths of a Kelvin per year is clearly detected in one of the channels. TMR housekeeping calibration data indicates a likely cause for the drift, as small changes in the isolation of latching ferrite circulators that are used in the onboard calibration-switch assembly. This method can easily be adapted to other microwave radiometers, especially imagers operating at frequencies in the atmospheric windows. In addition to detecting long-term instrument drifts with high precision, the method also provides a means for cross-calibrating different instruments. The cold reference provides a common tie point, even between sensors operating at different polarizations and/or incidence angles.


IEEE Transactions on Antennas and Propagation | 1993

Numerical annealing of low-redundancy linear arrays

Christopher S. Ruf

An algorithm is developed that estimates the optimal distribution of antenna elements in a minimum redundancy linear array. These distributions are used in thinned array interferometric imagers to synthesize effective antenna apertures much larger than the physical aperture. The optimal selection of antenna locations is extremely time consuming when large numbers of antennas are involved. This algorithm uses a numerical implementation of the annealing process to guide a random search for the optimal array configuration. Highly thinned low-redundancy arrays are computed for up to 30 array elements. These arrays are equivalent to the optimal solutions that are known for up to 11 elements. The arrays computed for 12-30 elements have the fewest redundancies reported to date. >


IEEE Transactions on Geoscience and Remote Sensing | 1995

TOPEX/Poseidon microwave radiometer (TMR). III. Wet troposphere range correction algorithm and pre-launch error budget

Stephen J. Keihm; Michael A. Janssen; Christopher S. Ruf

For pt.II see ibid., vol.33, no.1, p.138-46 (1995). The sole mission function of the TOPEX/Poseidon microwave radiometer (TMR) is to provide corrections for the altimeter range errors induced by the highly variable atmospheric water vapor content. The three TMR frequencies are shown to be near-optimum for measuring the vapor-induced path delay within an environment of variable cloud cover and variable sea surface flux background. After a review of the underlying physics relevant to the prediction of 5-40 GHz nadir-viewing microwave brightness temperatures, the authors describe the development of the statistical, two-step algorithm used for the TMR retrieval of path delay. Test simulations are presented which demonstrate the uniformity of algorithm performance over a range of cloud liquid and sea surface wind speed conditions. The results indicate that the inherent algorithm error (assuming noise free measurements and an exact physical model) is less than 0.4 cm of retrieved path delay for a global representation of atmospheric conditions. An algorithm error budget is developed which predicts an overall algorithm accuracy of 0.9 cm when modeling uncertainties are included. When combined with expected TMR antenna and brightness temperature accuracies, an overall measurement accuracy of 1.2 cm for the wet troposphere range correction is predicted. >


IEEE Transactions on Geoscience and Remote Sensing | 2007

Sensitivity of the Kurtosis Statistic as a Detector of Pulsed Sinusoidal RFI

R.D. De Roo; Sidharth Misra; Christopher S. Ruf

A new type of microwave radiometer detector that is capable of identifying low-level pulsed radio frequency interference (RFI) has been developed. The Agile Digital Detector can discriminate between RFI and natural thermal emission signals by directly measuring other moments of the signal than the variance that is traditionally measured. The kurtosis is the ratio of the fourth central moment of the predetected voltage to the square of the second central moment. It can be an excellent indicator of the presence of RFI. A number of issues that are related to the proper calculation of the kurtosis are addressed. The mean and standard deviation of the kurtosis, in both the absence and the presence of pulsed sinusoidal RFI, are derived. The kurtosis is much more sensitive to short-pulsed RFI-such as from radars-than to continuous-wave RFI. The minimum detectable power for pulsed sinusoidal RFI is found to be proportional to (M 3 N)-1/4, where N is the number of independent samples and M is the number of frequency subbands in the receiver.


IEEE Transactions on Geoscience and Remote Sensing | 2007

Initial Results of the Geostationary Synthetic Thinned Array Radiometer (GeoSTAR) Demonstrator Instrument

Alan B. Tanner; William J. Wilson; Bjorn H. Lambrigsten; Steve J. Dinardo; Shannon T. Brown; Pekka Kangaslahti; T. Gaier; Christopher S. Ruf; Steven Gross; Boon Lim; Stephen B. Musko; S. A. Rogacki; Jeff Piepmeier

The design, error budget, and preliminary test results of a 50-56-GHz synthetic aperture radiometer demonstration system are presented. The instrument consists of a fixed 24-element array of correlation interferometers and is capable of producing calibrated images with 1deg spatial resolution within a 17deg wide field of view. This system has been built to demonstrate a performance and a design which can be scaled to a much larger geostationary Earth imager. As a baseline, such a system would consist of about 300 elements and would be capable of providing contiguous full hemispheric images of the Earth with 1 K of radiometric precision and 50-km spatial resolution. An error budget is developed around this goal and then tested with the demonstrator system. Errors are categorized as either scaling (i.e., complex gain) or additive (noise and bias) errors. Sensitivity to gain and/or phase error is generally proportional to the magnitude of the expected visibility, which is high only in the shortest baselines of the array, based on model simulations of the Earth as viewed from geostationary Earth orbit. Requirements range from approximately 0.5% and 0.3deg of amplitude and phase uncertainty, respectively, for the closest spacings at the center of the array, to about 4% and 2.5deg for the majority of the array. The latter requirements are demonstrated with our instrument using relatively simple references and antenna models, and by relying on the intrinsic stability and efficiency of the system. The 0.5% requirement (for the short baselines) is met by measuring the detailed spatial response (e.g., on the antenna range) and by using an internal noise diode reference to stabilize the response. This result suggests a hybrid image synthesis algorithm in which long baselines are processed by a fast Fourier transform and the short baselines are processed by a more precise (G-matrix) algorithm which can handle small anomalies among antenna and receiver responses. Visibility biases and other additive errors must be below about 1.5 mK on average, regardless of baseline. The bias requirement is largely met with a phase-shifting scheme applied to the local oscillator distribution of our demonstration system. Low mutual coupling among the horn antennas of our design is also critical to minimize the biases caused by crosstalk of receiver noise. Performance is validated by a three-way comparison between interference fringes measured on the antenna range, solar transit observations, and the system model.


IEEE Transactions on Geoscience and Remote Sensing | 1995

TOPEX/Poseidon Microwave Radiometer (TMR). I. Instrument description and antenna temperature calibration

Christopher S. Ruf; Stephen J. Keihm; Michael A. Janssen

The TOPEX/Poseidon microwave radiometer (TMR) is a three-frequency radiometer flown on the TOPEX/Poseidon (T/P) satellite in low Earth orbit. It operates at 18, 21, and 37 GHz in a nadir-only viewing direction which is co-aligned with the T/P radar altimeters. The TMR monitors and corrects for the propagation path delay of the altimeter radar signal due to water vapor and nonprecipitating liquid water in the atmosphere. The paper describes the TMR instrument and the radiometric instrument calibration required to derive antenna temperature (T/sub A/) from the raw digital data. T/sub A/ precision of 0.4 K is predicted on orbit in all expected thermal environments, T/sub A/ accuracy of 0.5-0.6 K is expected following a post-launch field calibration campaign. These performance figures represent a significant improvement over those of the Seasat and Nimbus-G Scanning Multichannel Microwave Radiometer on which TMR is based. The improvements are the result of specific hardware design and calibration changes. Hardware changes include a redesigned feed horn, to reduce impedance mismatches, and the addition of radomes over the feed and sky horns, to reduce thermal variations. Calibration changes involve more extensive temperature cycling and data analysis during thermal/vacuum testing. >


Journal of Geophysical Research | 1994

TOPEX/POSEIDON microwave radiometer performance and in‐flight calibration

Christopher S. Ruf; Stephen J. Keihm; Bala Subramanya; Michael A. Janssen

Results of the in-flight calibration and performance evaluation campaign for the TOPEX/POSEIDON microwave radiometer (TMR) are presented. Intercomparisons are made between TMR and various sources of ground truth, including ground-based microwave water vapor radiometers, radiosondes, global climatological models, special sensor microwave imager data over the Amazon rain forest, and models of clear, calm, subpolar ocean regions. After correcting for preflight errors in the processing of thermal/vacuum data, relative channel offsets in the open ocean TMR brightness temperatures were noted at the ≈1 K level for the three TMR frequencies. Larger absolute offsets of 6–9 K over the rain forest indicated a ≈5% gain error in the three channel calibrations. This was corrected by adjusting the antenna pattern correction (APC) algorithm. A 10% scale error in the TMR path delay estimates, relative to coincident radiosondes, was corrected in part by the APC adjustment and in part by a 5% modification to the value assumed for the 22.235 GHz water vapor line strength in the path delay retrieval algorithm. After all in-flight corrections to the calibration, TMR global retrieval accuracy for the wet tropospheric range correction is estimated at 1.1 cm RMS with consistent performance under clear, cloudy, and windy conditions.


IEEE Transactions on Geoscience and Remote Sensing | 1990

Determination of cloud liquid water content using the SSM/I

John C. Alishouse; J.B. Snider; E.R. Westwater; Calvin T. Swift; Christopher S. Ruf; Sheila Snyder; Jennifer Vongsathorn; R.R. Ferraro

As part of a calibration/validation effort for the Special Sensor Microwave/Imager (SSM/I), coincident observations of SSM/I brightness temperatures and surface-based observations of cloud liquid water were obtained. These observations were used to validate initial algorithms and to derive an improved algorithm. The initial algorithms were divided into latitudinal-, seasonal-, and surface-type zones. It was found that these initial algorithms, which were of the D-matrix type, did not yield sufficiently accurate results. The surface-based measurements of channels were investigated; however, the 85 V channel was excluded because of excessive noise. It was found that there is no significant correlation between the SSM/I brightness temperatures and the surface-based cloud liquid water determination when the background surface is land or snow. A high correlation was found between brightness temperatures and ground-based measurements over the ocean. >

Collaboration


Dive into the Christopher S. Ruf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shannon T. Brown

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Alan B. Tanner

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Eric W. Uhlhorn

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

James Johnson

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Timothy L. Miller

Marshall Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Mark W. James

Marshall Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Scott Gleason

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

Boon Lim

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Peter G. Black

Science Applications International Corporation

View shared research outputs
Researchain Logo
Decentralizing Knowledge