Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steve M. Gentleman is active.

Publication


Featured researches published by Steve M. Gentleman.


Annals of Neurology | 2011

Inflammation after trauma: Microglial activation and traumatic brain injury

Anil Ramlackhansingh; David J. Brooks; Richard Greenwood; Subrata K. Bose; Federico Turkheimer; Kirsi M. Kinnunen; Steve M. Gentleman; Rolf A. Heckemann; Karen Gunanayagam; Giorgio Gelosa; David J. Sharp

Patient outcome after traumatic brain injury (TBI) is highly variable. The underlying pathophysiology of this is poorly understood, but inflammation is potentially an important factor. Microglia orchestrate many aspects of this response. Their activation can be studied in vivo using the positron emission tomography (PET) ligand [11C](R)PK11195 (PK). In this study, we investigate whether an inflammatory response to TBI persists, and whether this response relates to structural brain abnormalities and cognitive function.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism

Stanley B. Prusiner; Amanda L. Woerman; Daniel A. Mordes; Joel C. Watts; Ryan Rampersaud; David B. Berry; Smita Patel; Abby Oehler; Jennifer K. Lowe; Stephanie N. Kravitz; Daniel H. Geschwind; David V. Glidden; Glenda M. Halliday; Lefkos Middleton; Steve M. Gentleman; Lea T. Grinberg; Kurt Giles

Significance Prions are proteins that assume alternate shapes that become self-propagating, and while some prions perform normal physiological functions, others cause disease. Prions were discovered while studying the cause of rare neurodegenerative diseases of animals and humans called scrapie and Creutzfeldt–Jakob disease, respectively. We report here the discovery of α-synuclein prions that cause a more common neurodegenerative disease in humans called multiple system atrophy (MSA). In contrast to MSA, brain extracts from Parkinson’s disease (PD) patients were not transmissible to genetically engineered cells or mice, although much evidence argues that PD is also caused by α-synuclein, suggesting that this strain (or variant) is different from those that cause MSA. Prions are proteins that adopt alternative conformations that become self-propagating; the PrPSc prion causes the rare human disorder Creutzfeldt–Jakob disease (CJD). We report here that multiple system atrophy (MSA) is caused by a different human prion composed of the α-synuclein protein. MSA is a slowly evolving disorder characterized by progressive loss of autonomic nervous system function and often signs of parkinsonism; the neuropathological hallmark of MSA is glial cytoplasmic inclusions consisting of filaments of α-synuclein. To determine whether human α-synuclein forms prions, we examined 14 human brain homogenates for transmission to cultured human embryonic kidney (HEK) cells expressing full-length, mutant human α-synuclein fused to yellow fluorescent protein (α-syn140*A53T–YFP) and TgM83+/− mice expressing α-synuclein (A53T). The TgM83+/− mice that were hemizygous for the mutant transgene did not develop spontaneous illness; in contrast, the TgM83+/+ mice that were homozygous developed neurological dysfunction. Brain extracts from 14 MSA cases all transmitted neurodegeneration to TgM83+/− mice after incubation periods of ∼120 d, which was accompanied by deposition of α-synuclein within neuronal cell bodies and axons. All of the MSA extracts also induced aggregation of α-syn*A53T–YFP in cultured cells, whereas none of six Parkinson’s disease (PD) extracts or a control sample did so. Our findings argue that MSA is caused by a unique strain of α-synuclein prions, which is different from the putative prions causing PD and from those causing spontaneous neurodegeneration in TgM83+/+ mice. Remarkably, α-synuclein is the first new human prion to be identified, to our knowledge, since the discovery a half century ago that CJD was transmissible.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Transmission of multiple system atrophy prions to transgenic mice

Joel C. Watts; Kurt Giles; Abby Oehler; Lefkos Middleton; David T. Dexter; Steve M. Gentleman; Stephen J. DeArmond; Stanley B. Prusiner

Significance Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by the accumulation of misfolded α-synuclein protein in glial cells within the brain. Transgenic mice expressing mutant α-synuclein that were inoculated with brain homogenate from MSA patients developed clinical, biochemical, and pathological signs of a neurodegenerative disease, indicating that MSA is transmissible under certain conditions. This transmissibility is reminiscent of the human prion disorders, such as Creutzfeldt–Jakob disease, and suggests that MSA is caused by the accumulation of toxic α-synuclein prions in the brain. Prions are proteins that adopt alternative conformations, which become self-propagating. Increasing evidence argues that prions feature in the synucleinopathies that include Parkinson’s disease, Lewy body dementia, and multiple system atrophy (MSA). Although TgM83+/+ mice homozygous for a mutant A53T α-synuclein transgene begin developing CNS dysfunction spontaneously at ∼10 mo of age, uninoculated TgM83+/− mice (hemizygous for the transgene) remain healthy. To determine whether MSA brains contain α-synuclein prions, we inoculated the TgM83+/− mice with brain homogenates from two pathologically confirmed MSA cases. Inoculated TgM83+/− mice developed progressive signs of neurologic disease with an incubation period of ∼100 d, whereas the same mice inoculated with brain homogenates from spontaneously ill TgM83+/+ mice developed neurologic dysfunction in ∼210 d. Brains of MSA-inoculated mice exhibited prominent astrocytic gliosis and microglial activation as well as widespread deposits of phosphorylated α-synuclein that were proteinase K sensitive, detergent insoluble, and formic acid extractable. Our results provide compelling evidence that α-synuclein aggregates formed in the brains of MSA patients are transmissible and, as such, are prions. The MSA prion represents a unique human pathogen that is lethal upon transmission to Tg mice and as such, is reminiscent of the prion causing kuru, which was transmitted to chimpanzees nearly 5 decades ago.


Journal of Neuroinflammation | 2008

Interactions between APP secretases and inflammatory mediators

Magdalena Sastre; Jochen Walter; Steve M. Gentleman

There is now a large body of evidence linking inflammation to Alzheimers disease (AD). This association manifests itself neuropathologically in the presence of activated microglia and astrocytes around neuritic plaques and increased levels of inflammatory mediators in the brains of AD patients. It is considered that amyloid-β peptide (Aβ), which is derived from the processing of the longer amyloid precursor protein (APP), could be the most important stimulator of this response, and therefore determining the role of the different secretases involved in its generation is essential for a better understanding of the regulation of inflammation in AD. The finding that certain non-steroidal anti-inflammatory drugs (NSAIDs) can affect the processing of APP by inhibiting β- and γ-secretases, together with recent revelations that these enzymes may be regulated by inflammation, suggest that they could be an interesting target for anti-inflammatory drugs. In this review we will discuss some of these issues and the role of the secretases in inflammation, independent of their effect on Aβ formation.


Critical Care Medicine | 2010

Cognitive decline following major surgery is associated with gliosis, β-amyloid accumulation, and τ phosphorylation in old mice

Yanjie Wan; Jing Xu; Fanzhen Meng; Yuhua Bao; Yeying Ge; Niyati Lobo; Marcela P. Vizcaychipi; Denghai Zhang; Steve M. Gentleman; Mervyn Maze; Daqing Ma

Objective:Elderly patients undergoing major surgery often develop cognitive dysfunction and the mechanism of this postoperative complication remains elusive. We sought to determine whether postoperative cognitive dysfunction in old mice is associated with the pathogenesis of Alzheimers disease. Design:Prospective, randomized study. Setting:University teaching hospital-based research laboratory. Subjects:One-hundred and twenty C57BL/6 14-mo-old male mice (weighing 30-40 g). Interventions:Mice received intraperitoneal injections of either vehicle or Celastrol (a potent anti-inflammatory compound) for 3 days before undergoing sham surgery or partial hepatectomy, on the surgery day, and for a further 4 days after surgery. Cognitive function, hippocampal neuroinflammation, and pathologic markers of Alzheimers disease were assessed 1 day after surgery day 1, 3, or 7. Measurements and Main Results:Cognitive impairment following surgery was associated with the appearance of certain pathologic hallmarks of Alzheimers disease: microgliosis, astrogliosis, enhanced transcriptional and translational activity of &bgr;-amyloid precursor protein, &bgr;-amyloid production, and &tgr; protein hyperphosphorylation in the hippocampus. Surgery-induced changes in cognitive dysfunction were prevented by the administration of Celastrol as were changes in &bgr;-amyloid and &tgr; processing. Conclusions:These data suggest that surgery can provoke astrogliosis, &bgr;-amyloid accumulation, and &tgr; phosphorylation in old subjects, which is likely to be associated with the cognitive decline seen in postoperative cognitive dysfunction.


Molecular and Cellular Biology | 2012

Glycogen synthase kinase 3 inhibition promotes lysosomal biogenesis and autophagic degradation of the amyloid-β precursor protein.

Callum Parr; Raffaela Carzaniga; Steve M. Gentleman; Fred Van Leuven; Jochen Walter; Magdalena Sastre

ABSTRACT Alzheimers disease (AD) has been associated with altered activity of glycogen synthase kinase 3 (GSK3) isozymes, which are proposed to contribute to both neurofibrillary tangles and amyloid plaque formation. However, the molecular basis by which GSK3 affects the formation of Aβ remains unknown. Our aim was to identify the underlying mechanisms of GSK3-dependent effects on the processing of amyloid precursor protein (APP). For this purpose, N2a cells stably expressing APP carrying the Swedish mutation were treated with specific GSK3 inhibitors or transfected with GSK3α/β short interfering RNA. We show that inhibition of GSK3 leads to decreased expression of APP by enhancing its degradation via an increase in the number of lysosomes. This induction of the lysosomal/autophagy pathway was associated with nuclear translocation of transcription factor EB (TFEB), a master regulator of lysosomal biogenesis. Our data indicate that GSK3 inhibition reduces Aβ through an increase of the degradation of APP and its carboxy-terminal fragment (CTF) by activation of the lysosomal/autophagy pathway. These results suggest that an increased propensity toward autophagic/lysosomal alterations in AD patients could have consequences for neuronal function.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Propagation of prions causing synucleinopathies in cultured cells.

Amanda L. Woerman; Jan Stöhr; Atsushi Aoyagi; Ryan Rampersaud; Zuzana Krejciova; Joel C. Watts; Takao Ohyama; Smita Patel; Kartika Widjaja; Abby Oehler; David W. Sanders; Marc I. Diamond; William W. Seeley; Lefkos Middleton; Steve M. Gentleman; Daniel A. Mordes; Thomas C. Südhof; Kurt Giles; Stanley B. Prusiner

Significance Progressive supranuclear palsy (PSP) and multiple system atrophy (MSA) are neurodegenerative diseases caused by tau and α-synuclein prions, respectively. Prions, purified from human brains of deceased patients with PSP and MSA using phosphotungstic acid, were applied to cultured cell models that selectively form aggregates in the presence of tau or α-synuclein prions, respectively. Whereas brain homogenates prepared from two PSP and six MSA patients infected cultured cells, the same approach was unsuccessful with brain samples from three Parkinson’s disease patients. Our findings provide compelling evidence that PSP and MSA are prion diseases, and that MSA is caused by several distinct prion strains. Increasingly, evidence argues that many neurodegenerative diseases, including progressive supranuclear palsy (PSP), are caused by prions, which are alternatively folded proteins undergoing self-propagation. In earlier studies, PSP prions were detected by infecting human embryonic kidney (HEK) cells expressing a tau fragment [TauRD(LM)] fused to yellow fluorescent protein (YFP). Here, we report on an improved bioassay using selective precipitation of tau prions from human PSP brain homogenates before infection of the HEK cells. Tau prions were measured by counting the number of cells with TauRD(LM)–YFP aggregates using confocal fluorescence microscopy. In parallel studies, we fused α-synuclein to YFP to bioassay α-synuclein prions in the brains of patients who died of multiple system atrophy (MSA). Previously, MSA prion detection required ∼120 d for transmission into transgenic mice, whereas our cultured cell assay needed only 4 d. Variation in MSA prion levels in four different brain regions from three patients provided evidence for three different MSA prion strains. Attempts to demonstrate α-synuclein prions in brain homogenates from Parkinson’s disease patients were unsuccessful, identifying an important biological difference between the two synucleinopathies. Partial purification of tau and α-synuclein prions facilitated measuring the levels of these protein pathogens in human brains. Our studies should facilitate investigations of the pathogenesis of both tau and α-synuclein prion disorders as well as help decipher the basic biology of those prions that attack the CNS.


Acta Neuropathologica | 2015

Nucleus basalis of Meynert revisited: anatomy, history and differential involvement in Alzheimer’s and Parkinson’s disease

Alan King Lun Liu; Raymond Chuen-Chung Chang; R. K. B. Pearce; Steve M. Gentleman

It has been well established that neuronal loss within the cholinergic nucleus basalis of Meynert (nbM) correlates with cognitive decline in dementing disorders such as Alzheimer’s disease (AD). Friedrich Lewy first observed his eponymous inclusion bodies in the nbM of postmortem brain tissue from patients with Parkinson’s disease (PD) and cell loss in this area can be at least as extensive as that seen in AD. There has been confusion with regard to the terminology and exact localisation of the nbM within the human basal forebrain for decades due to the diffuse and broad structure of this “nucleus”. Also, while topographical projections from the nbM have been mapped out in subhuman primates, no direct clinicopathological correlations between subregional nbM and cortical pathology and specific cognitive profile decline have been performed in human tissue. Here, we review the evolution of the term nbM and the importance of standardised nbM sampling for neuropathological studies. Extensive review of the literature suggests that there is a caudorostral pattern of neuronal loss within the nbM in AD brains. However, the findings in PD are less clear due to the limited number of studies performed. Given the differing neuropsychiatric and cognitive deficits in Lewy body-associated dementias (PD dementia and dementia with Lewy bodies) as compared to AD, we hypothesise that a different pattern of neuronal loss will be found in the nbM of Lewy body disease brains. Understanding the functional significance of the subregions of the nbM could prove important in elucidating the pathogenesis of dementia in PD.


Brain | 2013

Parkinson’s disease is associated with altered expression of CaV1 channels and calcium-binding proteins

Michael J. Hurley; Bianca Brandon; Steve M. Gentleman; David T. Dexter

In Parkinsons disease oxidative stress and calcium-induced excitotoxicity have been considered important mechanisms leading to cell death for decades, but the factors that make some neurons vulnerable to neurodegeneration while others remain resistant are not fully understood. Studies of the disorder in animal models suggest that the voltage-gated calcium channel subtype Ca(V)1.3 has a role in making neurons susceptible to neurodegeneration and support earlier work in post-mortem human brain that suggested loss of calcium buffering capacity in neurons correlated with areas of neuronal loss in the substantia nigra of parkinsonian brain. This study examined expression of Ca(V)1 subtypes and the calcium-binding proteins calbindin, calmodulin and calreticulin in areas vulnerable and resistant to neurodegeneration in Parkinsons disease, in brain from neurologically normal individuals and patients with Parkinsons disease. In control brain the expression of a specific Ca(V)1 subtype or distribution of each calcium-binding protein did not associate with those regions prone to neurodegeneration in Parkinsons disease. Whereas, alterations in the amount of both Ca(V)1 subtypes and the calcium-binding proteins were found throughout the brain in Parkinsons disease. Some changes reflected the cell loss seen in Parkinsons disease, whereas others represented altered levels of cellular expression, which as they occurred in the absence of cell loss could not be explained as solely compensatory to the neurodegeneration. The finding of increased Ca(V)1.3 subtype expression in the cerebral cortex of early stage Parkinsons disease, before the appearance of pathological changes, supports the view that disturbed calcium homeostasis is an early feature of Parkinsons disease and not just a compensatory consequence to the neurodegenerative process. This interpretation is supported further by the finding that the ratio of Ca(V)1 subtypes differed throughout the brain in patients with Parkinsons disease compared with control subjects, in favour of an increased use of Ca(V)1.3, which would add to the metabolic burden for cells that rely on this Ca(V)1 subtype for electrical activity and could therefore render specific neuronal populations more vulnerable to neurodegeneration.


Neurology | 2016

Amyloid pathology and axonal injury after brain trauma

Gregory Scott; Anil Ramlackhansingh; Paul Edison; Peter J. Hellyer; James H. Cole; Mattia Veronese; Robert Leech; Richard Greenwood; Federico Turkheimer; Steve M. Gentleman; Rolf A. Heckemann; Paul M. Matthews; David J. Brooks; David J. Sharp

Objective: To image β-amyloid (Aβ) plaque burden in long-term survivors of traumatic brain injury (TBI), test whether traumatic axonal injury and Aβ are correlated, and compare the spatial distribution of Aβ to Alzheimer disease (AD). Methods: Patients 11 months to 17 years after moderate–severe TBI underwent 11C-Pittsburgh compound B (11C-PiB)-PET, structural and diffusion MRI, and neuropsychological examination. Healthy aged controls and patients with AD underwent PET and structural MRI. Binding potential (BPND) images of 11C-PiB, which index Aβ plaque density, were computed using an automatic reference region extraction procedure. Voxelwise and regional differences in BPND were assessed. In TBI, a measure of white matter integrity, fractional anisotropy, was estimated and correlated with 11C-PiB BPND. Results: Twenty-eight participants (9 with TBI, 9 controls, 10 with AD) were assessed. Increased 11C-PiB BPND was found in TBI vs controls in the posterior cingulate cortex and cerebellum. Binding in the posterior cingulate cortex increased with decreasing fractional anisotropy of associated white matter tracts and increased with time since injury. Compared to AD, binding after TBI was lower in neocortical regions but increased in the cerebellum. Conclusions: Increased Aβ burden was observed in TBI. The distribution overlaps with, but is distinct from, that of AD. This suggests a mechanistic link between TBI and the development of neuropathologic features of dementia, which may relate to axonal damage produced by the injury.

Collaboration


Dive into the Steve M. Gentleman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Brooks

University College London

View shared research outputs
Top Co-Authors

Avatar

Hei Ming Lai

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Edison

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rainer Hinz

University of Manchester

View shared research outputs
Researchain Logo
Decentralizing Knowledge