Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steve R. Roof is active.

Publication


Featured researches published by Steve R. Roof.


Blood | 2013

Antagonistic activities of the immunomodulator and PP2A-activating drug FTY720 (Fingolimod, Gilenya) in Jak2-driven hematologic malignancies

Joshua J. Oaks; Ramasamy Santhanam; Christopher J. Walker; Steve R. Roof; Jason G. Harb; Greg Ferenchak; Ann-Kathrin Eisfeld; James R. Van Brocklyn; Roger Briesewitz; Sahar A. Saddoughi; Kyosuke Nagata; Robert Bittman; Michael A. Caligiuri; Omar Abdel-Wahab; Ross L. Levine; Ralph B. Arlinghaus; Alfonso Quintás-Cardama; John M. Goldman; Jane F. Apperley; Alistair Reid; Dragana Milojkovic; Mark T. Ziolo; Guido Marcucci; Besim Ogretmen; Paolo Neviani; Danilo Perrotti

FTY720 (Fingolimod, Gilenya) is a sphingosine analog used as an immunosuppressant in multiple sclerosis patients. FTY720 is also a potent protein phosphatase 2A (PP2A)-activating drug (PAD). PP2A is a tumor suppressor found inactivated in different types of cancer. We show here that PP2A is inactive in polycythemia vera (PV) and other myeloproliferative neoplasms characterized by the expression of the transforming Jak2(V617F) oncogene. PP2A inactivation occurs in a Jak2(V617F) dose/kinase-dependent manner through the PI-3Kγ-PKC-induced phosphorylation of the PP2A inhibitor SET. Genetic or PAD-mediated PP2A reactivation induces Jak2(V617F) inactivation/downregulation and impairs clonogenic potential of Jak2(V617F) cell lines and PV but not normal CD34(+) progenitors. Likewise, FTY720 decreases leukemic allelic burden, reduces splenomegaly, and significantly increases survival of Jak2(V617F) leukemic mice without adverse effects. Mechanistically, we show that in Jak2(V617F) cells, FTY720 antileukemic activity requires neither FTY720 phosphorylation (FTY720-P) nor SET dimerization or ceramide induction but depends on interaction with SET K209. Moreover, we show that Jak2(V617F) also utilizes an alternative sphingosine kinase-1-mediated pathway to inhibit PP2A and that FTY720-P, acting as a sphingosine-1-phosphate-receptor-1 agonist, elicits signals leading to the Jak2-PI-3Kγ-PKC-SET-mediated PP2A inhibition. Thus, PADs (eg, FTY720) represent suitable therapeutic alternatives for Jak2(V617F) MPNs.


PLOS ONE | 2014

Nitric Oxide-Dependent Activation of CaMKII Increases Diastolic Sarcoplasmic Reticulum Calcium Release in Cardiac Myocytes in Response to Adrenergic Stimulation

Jerry Curran; Lifei Tang; Steve R. Roof; Sathya Velmurugan; Ashley Millard; Stephen Shonts; Honglan Wang; Demetrio J. Santiago; Usama Ahmad; Matthew Perryman; Donald M. Bers; Peter J. Mohler; Mark T. Ziolo; Thomas R. Shannon

Spontaneous calcium waves in cardiac myocytes are caused by diastolic sarcoplasmic reticulum release (SR Ca2+ leak) through ryanodine receptors. Beta-adrenergic (β-AR) tone is known to increase this leak through the activation of Ca-calmodulin-dependent protein kinase (CaMKII) and the subsequent phosphorylation of the ryanodine receptor. When β-AR drive is chronic, as observed in heart failure, this CaMKII-dependent effect is exaggerated and becomes potentially arrhythmogenic. Recent evidence has indicated that CaMKII activation can be regulated by cellular oxidizing agents, such as reactive oxygen species. Here, we investigate how the cellular second messenger, nitric oxide, mediates CaMKII activity downstream of the adrenergic signaling cascade and promotes the generation of arrhythmogenic spontaneous Ca2+ waves in intact cardiomyocytes. Both SCaWs and SR Ca2+ leak were measured in intact rabbit and mouse ventricular myocytes loaded with the Ca-dependent fluorescent dye, fluo-4. CaMKII activity in vitro and immunoblotting for phosphorylated residues on CaMKII, nitric oxide synthase, and Akt were measured to confirm activity of these enzymes as part of the adrenergic cascade. We demonstrate that stimulation of the β-AR pathway by isoproterenol increased the CaMKII-dependent SR Ca2+ leak. This increased leak was prevented by inhibition of nitric oxide synthase 1 but not nitric oxide synthase 3. In ventricular myocytes isolated from wild-type mice, isoproterenol stimulation also increased the CaMKII-dependent leak. Critically, in myocytes isolated from nitric oxide synthase 1 knock-out mice this effect is ablated. We show that isoproterenol stimulation leads to an increase in nitric oxide production, and nitric oxide alone is sufficient to activate CaMKII and increase SR Ca2+ leak. Mechanistically, our data links Akt to nitric oxide synthase 1 activation downstream of β-AR stimulation. Collectively, this evidence supports the hypothesis that CaMKII is regulated by nitric oxide as part of the adrenergic cascade leading to arrhythmogenesis.


Journal of Molecular and Cellular Cardiology | 2010

cAMP-independent activation of protein kinase A by the peroxynitrite generator SIN-1 elicits positive inotropic effects in cardiomyocytes

Mark J. Kohr; Christopher J. Traynham; Steve R. Roof; Jonathan P. Davis; Mark T. Ziolo

The phosphatase vs. kinase equilibrium plays a critical role in the regulation of myocardial contractility. Previous studies have demonstrated that peroxynitrite exerts a biphasic effect on cardiomyocyte contraction, such that high peroxynitrite reduced beta-adrenergic-stimulated myocyte contraction by inducing the dephosphorylation of phospholamban (PLB) via phosphatase activation. Conversely, low peroxynitrite increased basal and beta-adrenergic-stimulated contraction also through a PLB-dependent mechanism. However, previous studies have not elucidated the mechanism underlying the positive effects of low peroxynitrite on myocyte contraction. In the current study, we examined the phosphatase vs. kinase equilibrium as a potential mechanism underlying the positive effects of peroxynitrite. SIN-1 (peroxynitrite donor, 10 mumol/L) increased myocyte Ca(2+) transient and shortening amplitude, accelerated myocyte relaxation, and enhanced PLB phosphorylation. Specific inhibition of PP1/PP2a with okadaic acid failed to inhibit this positive effect. However, inhibition of PKA with KT5720 completely abolished the effects of SIN-1 on myocyte contraction. Additionally, SIN-1 induced a significant increase in PKA activity in cardiac homogenates, which was inhibited with FeTPPS (peroxynitrite decomposition catalyst). Surprisingly, SIN-1 also increased activity in purified preparations (i.e., in the absence of cAMP) of PKA. Therefore, our data suggest that peroxynitrite directly activates PKA (independent from cAMP), resulting in the enhancement of myocyte contraction and relaxation through the phosphorylation of PLB.


American Journal of Physiology-endocrinology and Metabolism | 2014

Effects of insulin resistance on skeletal muscle growth and exercise capacity in type 2 diabetic mouse models

Joseph E. Ostler; Santosh K. Maurya; Justin Dials; Steve R. Roof; Steven T. Devor; Mark T. Ziolo; Muthu Periasamy

Type 2 diabetes mellitus is associated with an accelerated muscle loss during aging, decreased muscle function, and increased disability. To better understand the mechanisms causing this muscle deterioration in type 2 diabetes, we assessed muscle weight, exercise capacity, and biochemistry in db/db and TallyHo mice at prediabetic and overtly diabetic ages. Maximum running speeds and muscle weights were already reduced in prediabetic db/db mice when compared with lean controls and more severely reduced in the overtly diabetic db/db mice. In contrast to db/db mice, TallyHo muscle size dramatically increased and maximum running speed was maintained during the progression from prediabetes to overt diabetes. Analysis of mechanisms that may contribute to decreased muscle weight in db/db mice demonstrated that insulin-dependent phosphorylation of enzymes that promote protein synthesis was severely blunted in db/db muscle. In addition, prediabetic (6-wk-old) and diabetic (12-wk-old) db/db muscle exhibited an increase in a marker of proteasomal protein degradation, the level of polyubiquitinated proteins. Chronic treadmill training of db/db mice improved glucose tolerance and exercise capacity, reduced markers of protein degradation, but only mildly increased muscle weight. The differences in muscle phenotype between these models of type 2 diabetes suggest that insulin resistance and chronic hyperglycemia alone are insufficient to rapidly decrease muscle size and function and that the effects of diabetes on muscle growth and function are animal model-dependent.


Basic Research in Cardiology | 2013

Neuronal nitric oxide synthase is indispensable for the cardiac adaptive effects of exercise

Steve R. Roof; Lifei Tang; Joseph E. Ostler; Muthu Periasamy; Sandor Gyorke; George E. Billman; Mark T. Ziolo

Exercise results in beneficial adaptations of the heart that can be directly observed at the ventricular myocyte level. However, the molecular mechanism(s) responsible for these adaptations are not well understood. Interestingly, signaling via neuronal nitric oxide synthase (NOS1) within myocytes results in similar effects as exercise. Thus, the objective was to define the role NOS1 plays in the exercise-induced beneficial contractile effects in myocytes. After an 8-week aerobic interval training program, exercise-trained (Ex) mice had higher VO2max and cardiac hypertrophy compared to sedentary (Sed) mice. Ventricular myocytes from Ex mice had increased NOS1 expression and nitric oxide production compared to myocytes from Sed mice. Remarkably, acute NOS1 inhibition normalized the enhanced contraction (shortening and Ca2+ transients) in Ex myocytes to Sed levels. The NOS1 effect on contraction was mediated via greater Ca2+ cycling that resulted from increased phospholamban phosphorylation. Intriguingly, a similar aerobic interval training program on NOS1 knockout mice failed to produce any beneficial cardiac adaptations (VO2max, hypertrophy, and contraction). These data demonstrate that the beneficial cardiac adaptations observed after exercise training were mediated via enhanced NOS1 signaling. Therefore, it is likely that beneficial effects of exercise may be mimicked by the interventions that increase NOS1 signaling. This pathway may provide a potential novel therapeutic target in cardiac patients who are unable or unwilling to exercise.


Nature Communications | 2016

Rationally engineered Troponin C modulates in vivo cardiac function and performance in health and disease

Vikram Shettigar; Bo Zhang; Sean C. Little; Hussam E. Salhi; Brian J. Hansen; Ning Li; Jianchao Zhang; Steve R. Roof; Hsiang-Ting Ho; Lucia Brunello; Jessica K. Lerch; Noah Weisleder; Vadim V. Fedorov; Federica Accornero; Jill A. Rafael-Fortney; Sandor Gyorke; Paul M. L. Janssen; Brandon J. Biesiadecki; Mark T. Ziolo; Jonathan P. Davis

Treatment for heart disease, the leading cause of death in the world, has progressed little for several decades. Here we develop a protein engineering approach to directly tune in vivo cardiac contractility by tailoring the ability of the heart to respond to the Ca2+ signal. Promisingly, our smartly formulated Ca2+-sensitizing TnC (L48Q) enhances heart function without any adverse effects that are commonly observed with positive inotropes. In a myocardial infarction (MI) model of heart failure, expression of TnC L48Q before the MI preserves cardiac function and performance. Moreover, expression of TnC L48Q after the MI therapeutically enhances cardiac function and performance, without compromising survival. We demonstrate engineering TnC can specifically and precisely modulate cardiac contractility that when combined with gene therapy can be employed as a therapeutic strategy for heart disease.


PLOS ONE | 2012

Diesterified Nitrone Rescues Nitroso-Redox Levels and Increases Myocyte Contraction Via Increased SR Ca2+ Handling

Christopher J. Traynham; Steve R. Roof; Honglan Wang; Robert A. Prosak; Lifei Tang; Serge Viatchenko-Karpinski; Hsiang-Ting Ho; Ira Racoma; Dominic J. Catalano; Xin Huang; Yongbin Han; Shang-U Kim; Sandor Gyorke; George E. Billman; Frederick A. Villamena; Mark T. Ziolo

Nitric oxide (NO) and superoxide (O2 −) are important cardiac signaling molecules that regulate myocyte contraction. For appropriate regulation, NO and O2 .− must exist at defined levels. Unfortunately, the NO and O2 .− levels are altered in many cardiomyopathies (heart failure, ischemia, hypertrophy, etc.) leading to contractile dysfunction and adverse remodeling. Hence, rescuing the nitroso-redox levels is a potential therapeutic strategy. Nitrone spin traps have been shown to scavenge O2 .− while releasing NO as a reaction byproduct; and we synthesized a novel, cell permeable nitrone, 2–2–3,4-dihydro-2H-pyrrole 1-oxide (EMEPO). We hypothesized that EMEPO would improve contractile function in myocytes with altered nitroso-redox levels. Ventricular myocytes were isolated from wildtype (C57Bl/6) and NOS1 knockout (NOS1−/−) mice, a known model of NO/O2 .− imbalance, and incubated with EMEPO. EMEPO significantly reduced O2 .− (lucigenin-enhanced chemiluminescence) and elevated NO (DAF-FM diacetate) levels in NOS1−/− myocytes. Furthermore, EMEPO increased NOS1−/− myocyte basal contraction (Ca2+ transients, Fluo-4AM; shortening, video-edge detection), the force-frequency response and the contractile response to β-adrenergic stimulation. EMEPO had no effect in wildtype myocytes. EMEPO also increased ryanodine receptor activity (sarcoplasmic reticulum Ca2+ leak/load relationship) and phospholamban Serine16 phosphorylation (Western blot). We also repeated our functional experiments in a canine post-myocardial infarction model and observed similar results to those seen in NOS1−/− myocytes. In conclusion, EMEPO improved contractile function in myocytes experiencing an imbalance of their nitroso-redox levels. The concurrent restoration of NO and O2 .− levels may have therapeutic potential in the treatment of various cardiomyopathies.


Frontiers in Physiology | 2012

Modulation of myocardial contraction by peroxynitrite

Mark J. Kohr; Steve R. Roof; Jay L. Zweier; Mark T. Ziolo

Peroxynitrite is a potent oxidant that is quickly emerging as a crucial modulator of myocardial function. This review will focus on the regulation of myocardial contraction by peroxynitrite during health and disease, with a specific emphasis on cardiomyocyte Ca2+ handling, proposed signaling pathways, and protein end-targets.


American Journal of Physiology-heart and Circulatory Physiology | 2011

Effects of increased systolic Ca2+ and phospholamban phosphorylation during β-adrenergic stimulation on Ca2+ transient kinetics in cardiac myocytes

Steve R. Roof; Thomas R. Shannon; Paul M. L. Janssen; Mark T. Ziolo

Previous studies demonstrated higher systolic intracellular Ca(2+) concentration ([Ca(2+)](i)) amplitudes result in faster [Ca(2+)](i) decline rates, as does β-adrenergic (β-AR) stimulation. The purpose of this study is to determine the major factor responsible for the faster [Ca(2+)](i) decline rate with β-AR stimulation, the increased systolic Ca(2+) concentration levels, or phosphorylation of phospholamban. Mouse myocytes were perfused under basal conditions [1 mM extracellular Ca(2+) concentration ([Ca(2+)](o))], followed by high extracellular Ca(2+) (3 mM [Ca(2+)](o)), washout with 1 mM [Ca(2+)](o), followed by 1 μM isoproterenol (ISO) with 1 mM [Ca(2+)](o). ISO increased Ser(16) phosphorylation compared with 3 mM [Ca(2+)](o), whereas Thr(17) phosphorylation was similar. Ca(2+) transient (CaT) (fluo 4) data were obtained from matched CaT amplitudes with 3 mM [Ca(2+)](o) and ISO. [Ca(2+)](i) decline was significantly faster with ISO compared with 3 mM [Ca(2+)](o). Interestingly, the faster decline with ISO was only seen during the first 50% of the decline. CaT time to peak was significantly faster with ISO compared with 3 mM [Ca(2+)](o). A Ca(2+)/calmodulin-dependent protein kinase (CAMKII) inhibitor (KN-93) did not affect the CaT decline rates with 3 mM [Ca(2+)](o) or ISO but normalized ISOs time to peak with 3 mM [Ca(2+)](o). Thus, during β-AR stimulation, the major factor for the faster CaT decline is due to Ser(16) phosphorylation, and faster time to peak is due to CAMKII activation.


Journal of Molecular and Cellular Cardiology | 2015

Obligatory role of neuronal nitric oxide synthase in the heart's antioxidant adaptation with exercise

Steve R. Roof; Hsiang-Ting Ho; Sean C. Little; Joseph E. Ostler; Elizabeth A. Brundage; Muthu Periasamy; Frederick A. Villamena; Sandor Gyorke; Brandon J. Biesiadecki; Christophe Heymes; Steven R. Houser; Jonathan P. Davis; Mark T. Ziolo

Excessive oxidative stress in the heart results in contractile dysfunction. While antioxidant therapies have been a disappointment clinically, exercise has shown beneficial results, in part by reducing oxidative stress. We have previously shown that neuronal nitric oxide synthase (nNOS) is essential for cardioprotective adaptations caused by exercise. We hypothesize that part of the cardioprotective role of nNOS is via the augmentation of the antioxidant defense with exercise by positively shifting the nitroso-redox balance. Our results show that nNOS is indispensable for the augmented anti-oxidant defense with exercise. Furthermore, exercise training of nNOS knockout mice resulted in a negative shift in the nitroso-redox balance resulting in contractile dysfunction. Remarkably, overexpressing nNOS (conditional cardiac-specific nNOS overexpression) was able to mimic exercise by increasing VO2max. This study demonstrates that exercise results in a positive shift in the nitroso-redox balance that is nNOS-dependent. Thus, targeting nNOS signaling may mimic the beneficial effects of exercise by combating oxidative stress and may be a viable treatment strategy for heart disease.

Collaboration


Dive into the Steve R. Roof's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brad Youngblood

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge