Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven A. Rodney is active.

Publication


Featured researches published by Steven A. Rodney.


The Astrophysical Journal | 2013

CLASH: three strongly lensed images of a candidate z ≈ 11 galaxy

Dan Coe; Adi Zitrin; Mauricio Carrasco; Xinwen Shu; Wei Zheng; Marc Postman; L. Bradley; Anton M. Koekemoer; R. J. Bouwens; Tom Broadhurst; A. Monna; Ole Host; Leonidas A. Moustakas; Holland C. Ford; John Moustakas; Arjen van der Wel; Megan Donahue; Steven A. Rodney; N. Benítez; S. Jouvel; S. Seitz; Daniel D. Kelson; P. Rosati

We present a candidate for the most distant galaxy known to date with a photometric redshift of z = 10.7+0.6 –0.4 (95% confidence limits; with z < 9.5 galaxies of known types ruled out at 7.2σ). This J-dropout Lyman break galaxy, named MACS0647-JD, was discovered as part of the Cluster Lensing and Supernova survey with Hubble (CLASH). We observe three magnified images of this galaxy due to strong gravitational lensing by the galaxy cluster MACSJ0647.7+7015 at z = 0.591. The images are magnified by factors of ~80, 7, and 2, with the brighter two observed at ~26th magnitude AB (~0.15 μJy) in the WFC3/IR F160W filter (~1.4-1.7 μm) where they are detected at 12σ. All three images are also confidently detected at 6σ in F140W (~1.2-1.6 μm), dropping out of detection from 15 lower wavelength Hubble Space Telescope filters (~0.2-1.4 μm), and lacking bright detections in Spitzer/IRAC 3.6 μm and 4.5 μm imaging (~3.2-5.0 μm). We rule out a broad range of possible lower redshift interlopers, including some previously published as high-redshift candidates. Our high-redshift conclusion is more conservative than if we had neglected a Bayesian photometric redshift prior. Given CLASH observations of 17 high-mass clusters to date, our discoveries of MACS0647-JD at z ~ 10.8 and MACS1149-JD at z ~ 9.6 are consistent with a lensed luminosity function extrapolated from lower redshifts. This would suggest that low-luminosity galaxies could have reionized the universe. However, given the significant uncertainties based on only two galaxies, we cannot yet rule out the sharp drop-off in number counts at z 10 suggested by field searches.


The Astrophysical Journal | 2014

Cosmological Constraints from Measurements of Type Ia Supernovae Discovered During the First 1.5 Yr of the Pan-STARRS1 Survey

Armin Rest; D. Scolnic; Ryan J. Foley; M. Huber; Ryan Chornock; Gautham S. Narayan; John L. Tonry; Edo Berger; Alicia M. Soderberg; Christopher W. Stubbs; Adam G. Riess; Robert P. Kirshner; S. J. Smartt; Edward F. Schlafly; Steven A. Rodney; M. T. Botticella; D. Brout; Peter M. Challis; Ian Czekala; Maria Rebecca Drout; Michael J. Hudson; R. Kotak; C. Leibler; R. Lunnan; G. H. Marion; M. McCrum; D. Milisavljevic; Andrea Pastorello; Nathan Edward Sanders; K. W. Smith

We present griz P1 light curves of 146 spectroscopically confirmed Type Ia supernovae (SNe Ia; 0.03 < z < 0.65) discovered during the first 1.5 yr of the Pan-STARRS1 Medium Deep Survey. The Pan-STARRS1 natural photometric system is determined by a combination of on-site measurements of the instrument response function and observations of spectrophotometric standard stars. We find that the systematic uncertainties in the photometric system are currently 1.2% without accounting for the uncertainty in the Hubble Space Telescope Calspec definition of the AB system. A Hubble diagram is constructed with a subset of 113 out of 146 SNe Ia that pass our light curve quality cuts. The cosmological fit to 310 SNe Ia (113 PS1 SNe Ia + 222 light curves from 197 low-z SNe Ia), using only supernovae (SNe) and assuming a constant dark energy equation of state and flatness, yields . When combined with BAO+CMB(Planck)+H 0, the analysis yields and including all identified systematics. The value of w is inconsistent with the cosmological constant value of –1 at the 2.3σ level. Tension endures after removing either the baryon acoustic oscillation (BAO) or the H 0 constraint, though it is strongest when including the H 0 constraint. If we include WMAP9 cosmic microwave background (CMB) constraints instead of those from Planck, we find , which diminishes the discord to <2σ. We cannot conclude whether the tension with flat ΛCDM is a feature of dark energy, new physics, or a combination of chance and systematic errors. The full Pan-STARRS1 SN sample with ~three times as many SNe should provide more conclusive results.


Nature | 2013

Slowly fading super-luminous supernovae that are not pair-instability explosions

M. Nicholl; S. J. Smartt; A. Jerkstrand; C. Inserra; M. McCrum; R. Kotak; M. Fraser; D. Wright; Ting-Wan Chen; K. W. Smith; D. R. Young; S. A. Sim; S. Valenti; D. A. Howell; Fabio Bresolin; R.-P. Kudritzki; John L. Tonry; M. Huber; Armin Rest; Andrea Pastorello; L. Tomasella; Enrico Cappellaro; Stefano Benetti; Seppo Mattila; E. Kankare; T. Kangas; G. Leloudas; Jesper Sollerman; F. Taddia; Edo Berger

Super-luminous supernovae that radiate more than 1044 ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1–4. Some evolve slowly, resembling models of ‘pair-instability’ supernovae. Such models involve stars with original masses 140–260 times that of the Sun that now have carbon–oxygen cores of 65–130 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron–positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of 56Ni are synthesized; this isotope decays to 56Fe via 56Co, powering bright light curves. Such massive progenitors are expected to have formed from metal-poor gas in the early Universe. Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova. Here we report observations of two slow-to-fade super-luminous supernovae that show relatively fast rise times and blue colours, which are incompatible with pair-instability models. Their late-time light-curve and spectral similarities to supernova 2007bi call the nature of that event into question. Our early spectra closely resemble typical fast-declining super-luminous supernovae, which are not powered by radioactivity. Modelling our observations with 10–16 solar masses of magnetar-energized ejecta demonstrates the possibility of a common explosion mechanism. The lack of unambiguous nearby pair-instability events suggests that their local rate of occurrence is less than 6 × 10−6 times that of the core-collapse rate.


The Astrophysical Journal | 2011

Pan-STARRS1 DISCOVERY OF TWO ULTRALUMINOUS SUPERNOVAE AT z ≈ 0.9

Laura Chomiuk; Ryan Chornock; Alicia M. Soderberg; Edo Berger; Roger A. Chevalier; Ryan J. Foley; M. E. Huber; Gautham S. Narayan; Armin Rest; S. Gezari; Robert P. Kirshner; Adam G. Riess; Steven A. Rodney; S. J. Smartt; Christopher W. Stubbs; John L. Tonry; William Michael Wood-Vasey; W. S. Burgett; K. C. Chambers; Ian Czekala; H. Flewelling; K. Forster; N. Kaiser; R.-P. Kudritzki; E. A. Magnier; D. C. Martin; Jeffrey S. Morgan; James D. Neill; P. A. Price; Kathy Roth

We present the discovery of two ultraluminous supernovae (SNe) at z ≈ 0.9 with the Pan-STARRS1 Medium Deep Survey. These SNe, PS1-10ky and PS1-10awh, are among the most luminous SNe ever discovered, comparable to the unusual transients SN 2005ap and SCP 06F6. Like SN 2005ap and SCP 06F6, they show characteristic high luminosities (M_(bol) ≈ –22.5 mag), blue spectra with a few broad absorption lines, and no evidence for H or He. We have constructed a full multi-color light curve sensitive to the peak of the spectral energy distribution in the rest-frame ultraviolet, and we have obtained time series spectroscopy for these SNe. Given the similarities between the SNe, we combine their light curves to estimate a total radiated energy over the course of explosion of (0.9-1.4) × 10^(51) erg. We find photospheric velocities of 12,000-19,000 km s^(–1) with no evidence for deceleration measured across ~3 rest-frame weeks around light curve peak, consistent with the expansion of an optically thick massive shell of material. We show that, consistent with findings for other ultraluminous SNe in this class, radioactive decay is not sufficient to power PS1-10ky, and we discuss two plausible origins for these events: the initial spin-down of a newborn magnetar in a core-collapse SN, or SN shock breakout from the dense circumstellar wind surrounding a Wolf-Rayet star.


Science | 2015

Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens

Patrick L. Kelly; Steven A. Rodney; Tommaso Treu; Ryan J. Foley; Gabriel B. Brammer; Kasper B. Schmidt; Adi Zitrin; Alessandro Sonnenfeld; Louis G. Strolger; Or Graur; Alexei V. Filippenko; Saurabh W. Jha; Adam G. Riess; Maruša Bradač; Benjamin J. Weiner; D. Scolnic; Matthew A. Malkan; Anja von der Linden; Michele Trenti; J. Hjorth; R. Gavazzi; A. Fontana; Julian Merten; Curtis McCully; Tucker Jones; Marc Postman; Alan Dressler; Brandon Patel; S. Bradley Cenko; Melissa Lynn Graham

Finding four for the light of one Seeing double may cause concern for some, but seeing quadruple? Its just what astronomers have been hoping for. Kelly et al. have now detected four images of the same distant supernova with the sharp eye of a space telescope. The supernova shines brightly from the arm of a spiral galaxy that lies far beyond another galaxy between it and us. This intervening galaxy is massive enough to bend the light from the supernova and its host galaxy into multiple images. This behavior relies on the curvature of spacetime and will provide insight into the luminous and dark matter in the lensing galaxy. Science, this issue p. 1123 Light from a distant supernova at z = 1.491 is detected in four images after being deflected en route by gravitational forces. In 1964, Refsdal hypothesized that a supernova whose light traversed multiple paths around a strong gravitational lens could be used to measure the rate of cosmic expansion. We report the discovery of such a system. In Hubble Space Telescope imaging, we have found four images of a single supernova forming an Einstein cross configuration around a redshift z = 0.54 elliptical galaxy in the MACS J1149.6+2223 cluster. The cluster’s gravitational potential also creates multiple images of the z = 1.49 spiral supernova host galaxy, and a future appearance of the supernova elsewhere in the cluster field is expected. The magnifications and staggered arrivals of the supernova images probe the cosmic expansion rate, as well as the distribution of matter in the galaxy and cluster lenses.


The Astrophysical Journal | 2014

TYPE-Ia SUPERNOVA RATES TO REDSHIFT 2.4 FROM CLASH: THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE

Or Graur; Steven A. Rodney; D. Maoz; Adam G. Riess; Saurabh W. Jha; Marc Postman; Tomas Dahlen; T. W.-S. Holoien; Curtis McCully; Brandon Patel; Louis-Gregory Strolger; N. Benítez; D. Coe; S. Jouvel; Elinor Medezinski; A. Molino; M. Nonino; L. Bradley; A. Koehemoer; I. Balestra; S. B. Cenko; Kelsey I. Clubb; Mark Dickinson; A. V. Filippenko; Teddy F. Frederiksen; Peter Marcus Garnavich; J. Hjorth; David O. Jones; Bruno Leibundgut; Thomas Matheson

We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, ~13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z > 1.2. We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range 1.8 99% significance level.


Publications of the Astronomical Society of the Pacific | 2010

Results from the Supernova Photometric Classification Challenge

Richard Kessler; Bruce A. Bassett; Pavel Belov; Vasudha Bhatnagar; Heather Campbell; A. Conley; Joshua A. Frieman; Alexandre Glazov; S. González-Gaitán; Renée Hlozek; Saurabh W. Jha; Stephen Kuhlmann; Martin Kunz; Hubert Lampeitl; Ashish A. Mahabal; James Newling; Robert C. Nichol; David Parkinson; Ninan Sajeeth Philip; Dovi Poznanski; Joseph W. Richards; Steven A. Rodney; Masao Sako; Donald P. Schneider; Maximilian D. Stritzinger; Melvin Varughese

We report results from the Supernova Photometric Classification Challenge (SNPhotCC), a publicly released mix of simulated supernovae (SNe), with types (Ia, Ibc, and II) selected in proportion to their expected rates. The simulation was realized in the griz filters of the Dark Energy Survey (DES) with realistic observing conditions (sky noise, point-spread function, and atmospheric transparency) based on years of recorded conditions at the DES site. Simulations of non-Ia-type SNe are based on spectroscopically confirmed light curves that include unpublished non-Ia samples donated from the Carnegie Supernova Project (CSP), the Supernova Legacy Survey (SNLS), and the Sloan Digital Sky Survey-II (SDSS-II). A spectroscopically confirmed subset was provided for training. We challenged scientists to run their classification algorithms and report a type and photo-z for each SN. Participants from 10 groups contributed 13 entries for the sample that included a host-galaxy photo-z for each SN and nine entries for the sample that had no redshift information. Several different classification strategies resulted in similar performance, and for all entries the performance was significantly better for the training subset than for the unconfirmed sample. For the spectroscopically unconfirmed subset, the entry with the highest average figure of merit for classifying SNe Ia has an efficiency of 0.96 and an SN Ia purity of 0.79. As a public resource for the future development of photometric SN classification and photo-z estimators, we have released updated simulations with improvements based on our experience from the SNPhotCC, added samples corresponding to the Large Synoptic Survey Telescope (LSST) and the SDSS-II, and provided the answer keys so that developers can evaluate their own analysis.


Monthly Notices of the Royal Astronomical Society | 2014

The superluminous supernova PS1-11ap: bridging the gap between low and high redshift

M. McCrum; S. J. Smartt; R. Kotak; Armin Rest; A. Jerkstrand; C. Inserra; Steven A. Rodney; Ting-Wan Chen; D. A. Howell; M. Huber; Andrea Pastorello; John L. Tonry; Fabio Bresolin; R.-P. Kudritzki; Ryan Chornock; Edo Berger; K. W. Smith; M. T. Botticella; Ryan J. Foley; M. Fraser; D. Milisavljevic; M. Nicholl; Adam G. Riess; Christopher W. Stubbs; S. Valenti; William Michael Wood-Vasey; D. Wright; D. R. Young; Maria Rebecca Drout; Ian Czekala

We present optical photometric and spectroscopic coverage of the superluminous supernova (SLSN) PS1-11ap, discovered with the Pan-STARRS1 Medium Deep Survey at z = 0.524. This intrinsically blue transient rose slowly to reach a peak magnitude ofMu =− 21.4 mag and bolometric luminosity of 8 × 10 43 erg s −1 before settling on to a relatively shallow gradient of decline. The observed decline is significantly slower than those of the SLSNe-Ic which have been the focus of much recent attention. Spectroscopic similarities with the lower redshift SN2007bi and a decline rate similar to 56 Co decay time-scale initially indicated that this transient could be a candidate for a pair instability supernova (PISN) explosion. Overall the transient appears quite similar to SN2007bi and the lower redshift object PTF12dam. The extensive data set, from 30 d before peak to 230 d after, allows a detailed and quantitative comparison with published models of PISN explosions. We find that the PS1-11ap data do not match these model explosion parameters well, supporting the recent claim that these SNe are not pair instability explosions. We show that PS1-11ap has many features in common with the faster declining SLSNe-Ic, and the light-curve evolution can also be quantitatively explained by the magnetar spin-down model. At a redshift of z = 0.524, the observer-frame optical coverage provides comprehensive rest-frame UV data and allows us to compare it with the SLSNe recently found at high redshifts between z = 2 and 4. While these high-z explosions


The Astrophysical Journal | 2013

Color dispersion and Milky-Way-like reddening among type Ia supernovae

D. Scolnic; Adam G. Riess; Ryan J. Foley; Armin Rest; Steven A. Rodney; Dillon J. Brout; David O. Jones

Past analyses of Type Ia supernovae have identified an irreducible scatter of 5%-10% in distance, widely attributed to an intrinsic dispersion in luminosity. Another equally valid source of this scatter is intrinsic dispersion in color. Misidentification of the true source of this scatter can bias both the retrieved color-luminosity relation and cosmological parameter measurements. The size of this bias depends on the magnitude of the intrinsic color dispersion relative to the distribution of colors that correlate with distance. We produce a realistic simulation of a misattribution of intrinsic scatter and find a negative bias in the recovered color-luminosity relation, β, of Δβ ≈ –1.0 (∼33%) and a positive bias in the equation of state parameter, w, of Δw ≈ +0.04 (∼4%). We re-analyze current published datasets with the assumption that the distance scatter is predominantly the result of color. Unlike previous analyses, we find that the data are consistent with a Milky-Way-like reddening law (R{sub V} = 3.1) and that a Milky-Way dust model better predicts the asymmetric color-luminosity trends than the conventional luminosity scatter hypothesis. We also determine that accounting for color variation reduces the correlation between various host galaxy properties and Hubble residuals by ∼20%.


Monthly Notices of the Royal Astronomical Society | 2015

Hubble Frontier Fields: a high-precision strong-lensing analysis of the massive galaxy cluster Abell 2744 using ∼180 multiple images

Mathilde Jauzac; Johan Richard; Eric Jullo; Benjamin Clément; Marceau Limousin; J.-P. Kneib; Harald Ebeling; P. Natarajan; Steven A. Rodney; Hakim Atek; Richard Massey; D. Eckert; E. Egami; M. Rexroth

We present a high-precision mass model of galaxy cluster Abell 2744, based on a strong gravitational-lensing analysis of the Hubble Space Telescope Frontier Fields (HFF) imaging data, which now include both Advanced Camera for Surveys and Wide Field Camera 3 observations to the final depth. Taking advantage of the unprecedented depth of the visible and near-infrared data, we identify 34 new multiply imaged galaxies, bringing the total to 61, comprising 181 individual lensed images. In the process, we correct previous erroneous identifications and positions of multiple systems in the northern part of the cluster core. With the LENSTOOL software and the new sets of multiple images, we model the cluster using two cluster-scale dark matter haloes plus galaxy-scale haloes for the cluster members. Our best-fitting model predicts image positions with an rms error of 0.79 arcsec, which constitutes an improvement by almost a factor of 2 over previous parametric models of this cluster. We measure the total projected mass inside a 200 kpc aperture as (2.162 +/- 0.005) x10(14) M-circle dot, thus reaching 1 per cent level precision for the second time, following the recent HFF measurement of MACSJ0416.1-2403. Importantly, the higher quality of the mass model translates into an overall improvement by a factor of 4 of the derived magnification factor. Together with our previous HFF gravitational lensing analysis, this work demonstrates that the HFF data enables high-precision mass measurements for massive galaxy clusters and the derivation of robust magnification maps to probe the early Universe.

Collaboration


Dive into the Steven A. Rodney's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryan J. Foley

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saurabh W. Jha

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar

Louis-Gregory Strolger

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

Adi Zitrin

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Curtis McCully

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge