Louis-Gregory Strolger
Space Telescope Science Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Louis-Gregory Strolger.
The Astrophysical Journal | 2004
Adam G. Riess; Louis-Gregory Strolger; John L. Tonry; Stefano Casertano; Henry C. Ferguson; B. Mobasher; Peter M. Challis; Alexei V. Filippenko; Saurabh W. Jha; Weidong Li; Ryan Chornock; Robert P. Kirshner; Bruno Leibundgut; Mark Dickinson; Mario Livio; Mauro Giavalisco; Charles C. Steidel; Txitxo Benı́tez; Zlatan I. Tsvetanov
We have discovered 16 Type Ia supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to provide the first conclusive evidence for cosmic deceleration that preceded the current epoch of cosmic acceleration. These objects, discovered during the course of the GOODS ACS Treasury program, include 6 of the 7 highest redshift SNe Ia known, all at z > 1.25, and populate the Hubble diagram in unexplored territory. The luminosity distances to these objects and to 170 previously reported SNe Ia have been determined using empirical relations between light-curve shape and luminosity. A purely kinematic interpretation of the SN Ia sample provides evidence at the greater than 99% confidence level for a transition from deceleration to acceleration or, similarly, strong evidence for a cosmic jerk. Using a simple model of the expansion history, the transition between the two epochs is constrained to be at z = 0.46 ± 0.13. The data are consistent with the cosmic concordance model of ΩM ≈ 0.3, ΩΛ ≈ 0.7 (χ = 1.06) and are inconsistent with a simple model of evolution or dust as an alternative to dark energy. For a flat universe with a cosmological constant, we measure ΩM = 0.29 ± (equivalently, ΩΛ = 0.71). When combined with external flat-universe constraints, including the cosmic microwave background and large-scale structure, we find w = -1.02 ± (and w < -0.76 at the 95% confidence level) for an assumed static equation of state of dark energy, P = wρc2. Joint constraints on both the recent equation of state of dark energy, w0, and its time evolution, dw/dz, are a factor of ~8 more precise than the first estimates and twice as precise as those without the SNe Ia discovered with HST. Our constraints are consistent with the static nature of and value of w expected for a cosmological constant (i.e., w0 = -1.0, dw/dz = 0) and are inconsistent with very rapid evolution of dark energy. We address consequences of evolving dark energy for the fate of the universe.
The Astrophysical Journal | 2004
Mauro Giavalisco; Henry C. Ferguson; Anton M. Koekemoer; Mark Dickinson; D. M. Alexander; F. E. Bauer; Jacqueline Bergeron; C. Biagetti; W. N. Brandt; Stefano Casertano; Catherine J. Cesarsky; Eleni T. Chatzichristou; Christopher J. Conselice; S. Cristiani; L. N. da Costa; Tomas Dahlen; Duilia Fernandes de Mello; Peter R. M. Eisenhardt; T. Erben; S. M. Fall; C. D. Fassnacht; Robert A. E. Fosbury; Andrew S. Fruchter; Jonathan P. Gardner; Norman A. Grogin; Richard N. Hook; A. E. Hornschemeier; Rafal Idzi; S. Jogee; Claudia Kretchmer
This special issue of the Astrophysical Journal Letters is dedicated to presenting initial results from the Great Observatories Origins Deep Survey (GOODS) that are primarily, but not exclusively, based on multiband imaging data obtained with the Hubble Space Telescope and the Advanced Camera for Surveys (ACS). The survey covers roughly 320 arcmin2 in the ACS F435W, F606W, F814W, and F850LP bands, divided into two well-studied fields. Existing deep observations from the Chandra X-Ray Observatory and ground-based facilities are supplemented with new, deep imaging in the optical and near-infrared from the European Southern Observatory and from the Kitt Peak National Observatory. Deep observations with the Space Infrared Telescope Facility are scheduled. Reduced data from all facilities are being released worldwide within 3-6 months of acquisition. Together, this data set provides two deep reference fields for studies of distant normal and active galaxies, supernovae, and faint stars in our own Galaxy. This Letter serves to outline the survey strategy and describe the specific data that have been used in the accompanying letters, summarizing the reduction procedures and sensitivity limits.
Nature | 2006
Andrew S. Fruchter; Andrew J. Levan; Louis-Gregory Strolger; Paul M. Vreeswijk; S. E. Thorsett; D. F. Bersier; I. Burud; J. M. Castro Cerón; A. J. Castro-Tirado; Christopher J. Conselice; T. Dahlen; Henry C. Ferguson; J. P. U. Fynbo; Peter Marcus Garnavich; R. A. Gibbons; J. Gorosabel; T. R. Gull; J. Hjorth; S. T. Holland; C. Kouveliotou; Zoltan G. Levay; Mario Livio; M. R. Metzger; Peter E. Nugent; L. Petro; E. Pian; James E. Rhoads; Adam G. Riess; Kailash C. Sahu; Alain Smette
When massive stars exhaust their fuel, they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. On occasion, this stellar collapse also powers an even more brilliant relativistic explosion known as a long-duration γ-ray burst. One would then expect that these long γ-ray bursts and core-collapse supernovae should be found in similar galactic environments. Here we show that this expectation is wrong. We find that the γ-ray bursts are far more concentrated in the very brightest regions of their host galaxies than are the core-collapse supernovae. Furthermore, the host galaxies of the long γ-ray bursts are significantly fainter and more irregular than the hosts of the core-collapse supernovae. Together these results suggest that long-duration γ-ray bursts are associated with the most extremely massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long γ-ray bursts are relatively rare in galaxies such as our own Milky Way.
The Astrophysical Journal | 2004
Tomas Dahlen; Louis-Gregory Strolger; Adam G. Riess; B. Mobasher; Ranga-Ram Chary; Christopher J. Conselice; Henry C. Ferguson; Andrew S. Fruchter; Mauro Giavalisco; Mario Livio; Piero Madau; Nino Panagia; John L. Tonry
We use a sample of 42 supernovae detected with the Advanced Camera for Surveys on-board the Hubble Space Telescope as part of the Great Observatories Origins Deep Survey to measure the rate of core collapse supernovae to z ∼ 0.7 and type Ia supernovae to z ∼ 1.6. This significantly increases the redshift range where supernova rates have been estimated from observations. The rate of core collapse supernovae can be used as an independent probe of the cosmic star formation rate. Based on the observations of 17 core collapse supernovae, we measure an increase in the core collapse supernova rate by a factor of ∼ 1.6 in the range 0.3 1 compared to low redshift. At higher redshift (z > ∼ 1), we find a suggested decrease in the type Ia rate with redshift. This evolution of the Ia rate with redshift is consistent with a type Ia progenitor model where there is a substantial delay between the formation of the progenitor star and the explosion of the supernova. Assuming that the type Ia progenitor stars have initial main sequence masses 3M⊙ < M < 8M⊙, we find that 5 −7% of the available progenitors explode as type Ia supernovae. Subject headings: galaxies: distances and redshifts — galaxies: stellar content — supernovae: general — surveys —
Monthly Notices of the Royal Astronomical Society | 2010
K. M. Svensson; Andrew J. Levan; Nial R. Tanvir; Andrew S. Fruchter; Louis-Gregory Strolger
We present a comparative study of the galactic and small-scale environments of gamma-ray bursts (GRBs) and core-collapse supernovae (CCSNe). We use a sample of 34 GRB hosts at z < 1.2, and a comparison sample of 58 supernova hosts located within the Great Observatories Origins Deep Survey footprint. We fit template spectra to the available photometric data, which span the range 0.45-24 mu m, and extract absolute magnitudes, stellar masses and star formation rates from the resulting fits. Our results broadly corroborate previous findings, but offer significant enhancements in spectral coverage and a factor 2-3 increase in sample size. Specifically, we find that CCSNe occur frequently in massive spirals (spiral fraction similar to 50 per cent). In contrast GRBs occur in small, relatively low mass galaxies with high specific and surface star formation rates, and have a spiral fraction of only similar to 10 per cent. A comparison of the rest-frame absolute magnitudes of the GRB and CCSN sample is less conclusive than found in previous work, suggesting that while GRB hosts are typically both smaller and bluer than those of CCSN their total blue light luminosities are only slightly lower. We suggest this is likely due to rapid periods of intensified star formation activity, as indicated by the high specific SFRs, which both create the GRB progenitors and briefly significantly enhance the host galaxy blue luminosity. Finally, our analysis of local environments of GRBs and CCSNe shows that GRBs are highly concentrated on their host light, and further occur in regions of higher absolute surface luminosity than CCSNe.
The Astrophysical Journal | 2008
Tomas Dahlen; Louis-Gregory Strolger; Adam G. Riess
We use the HST ACS imaging of the two GOODS fields during Cycles 11, 12, and 13 to derive the Type Ia supernova rate in four redshift intervals in the range -->0.2 . The sample now consists of 56 Type Ia supernovae. The rates we derive are consistent with our results based on the Cycle 11 observations. In particular, the small number of supernovae detected at -->z > 1.4 supports our previous result that there is a drop in the Type Ia supernova rate at high redshift, suggesting a long time delay between the formation of the progenitor star and the explosion of the supernova. If described by a simple one-parameter model, we find a characteristic delay time of 2-3 Gyr. However, a number of recent results based on, e.g., low-redshift supernova samples and supernova host galaxy properties suggest that the supernova delay-time distribution is bimodal. In this model a major fraction of the Type Ia supernova rate are prompt and follow the star formation rate, while a smaller fraction of the rate have a long delay time, making this channel proportional to mass. While our results are fully consistent with the bimodal model at low redshifts, the low rate we find at -->z > 1.4 appears to contradict these results. Models that correct for star formation hidden by dust may explain at least part of the differences. Here we discuss this possibility together with other ways to reconcile data and models.
The Astrophysical Journal | 2014
Or Graur; Steven A. Rodney; D. Maoz; Adam G. Riess; Saurabh W. Jha; Marc Postman; Tomas Dahlen; T. W.-S. Holoien; Curtis McCully; Brandon Patel; Louis-Gregory Strolger; N. Benítez; D. Coe; S. Jouvel; Elinor Medezinski; A. Molino; M. Nonino; L. Bradley; A. Koehemoer; I. Balestra; S. B. Cenko; Kelsey I. Clubb; Mark Dickinson; A. V. Filippenko; Teddy F. Frederiksen; Peter Marcus Garnavich; J. Hjorth; David O. Jones; Bruno Leibundgut; Thomas Matheson
We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, ~13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z > 1.2. We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range 1.8 99% significance level.
The Astrophysical Journal | 2012
Tomas Dahlen; Louis-Gregory Strolger; Adam G. Riess; Seppo Mattila; E. Kankare; Bahram Mobasher
We use a sample of 45 core collapse supernovae detected with the Advanced Camera for Surveys on board the Hubble Space Telescope to derive the core collapse supernova rate in the redshift range 0.1 0.5, emphasizing the need to better control the systematic effects. For example, a better understanding of the amount of dust extinction in the host galaxies and knowledge of the supernova luminosity function, in particular the fraction of faint M ?15 supernovae, is needed to better constrain the rates. When comparing our results with the core collapse supernova rate based on the star formation rate, we find a good agreement, consistent with the supernova rate following the star formation rate, as expected.
The Astronomical Journal | 2004
Kevin Krisciunas; Mark M. Phillips; Nicholas B. Suntzeff; S. E. Persson; Mario Hamuy; R. Antezana; Pablo Candia; Alejandro Clocchiatti; D. L. DePoy; Luis González; Sergio Gonzalez; Wojtek Krzeminski; Jose Manuel Campillos Maza; Peter E. Nugent; Y.-L. Qiu; Armin Rest; M. Roth; Maximilian D. Stritzinger; Louis-Gregory Strolger; Ian B. Thompson; T. B. Williams; M. Wischnjewsky
We present near-infrared photometry of the Type Ia supernova (SN) 1999ee; also, optical and infrared photometry of the Type Ia SNe 2000bh, 2000ca, and 2001ba. For SNe 1999ee and 2000bh, we present the first-ever SN photometry at 1.035 μm (the Y band). We present K-corrections that transform the infrared photometry in the observers frame to the supernova rest frame. Using our infrared K-corrections and stretch factors derived from optical photometry, we construct JHK templates that can be used to determine the apparent magnitudes at maximum if one has some data in the window -12 to +10 days with respect to T(Bmax). Following up previous work on the uniformity of V minus IR loci of Type Ia supernovae of midrange decline rates, we present unreddened loci for slow decliners. We also discuss evidence for a continuous change of color at a given epoch as a function of decline rate.
Astronomy and Astrophysics | 2012
Andrea Pastorello; M. L. Pumo; H. Navasardyan; L. Zampieri; M. Turatto; Jesper Sollerman; F. Taddia; E. Kankare; Seppo Mattila; J. Nicolas; E. Prosperi; A. San Segundo Delgado; S. Taubenberger; T. Boles; M. Bachini; Stefano Benetti; F. Bufano; E. Cappellaro; A. D. Cason; G. Cetrulo; Mattias Ergon; A. Harutyunyan; S. Howerton; G. M. Hurst; Ferdinando Patat; Maximilian D. Stritzinger; Louis-Gregory Strolger; W. Wells
Context. 1987A-like events form a rare sub-group of hydrogen-rich core-collapse supernovae that are thought to originate from the explosion of blue supergiant stars. Although SN 1987A is the best known supernova, very few objects of this group have been discovered and, hence, studied. Aims. In this paper we investigate the properties of SN 2009E, which exploded in a relatively nearby spiral galaxy (NGC 4141) and that is probably the faintest 1987A-like supernova discovered so far. We also attempt to characterize this subgroup of core-collapse supernovae with the help of the literature and present new data for a few additional objects. Methods. The lack of early-time observations from professional telescopes is compensated by frequent follow-up observations performed by a number of amateur astronomers. This allows us to reconstruct a well-sampled light curve for SN 2009E. Spectroscopic observations which started about 2 months after the supernova explosion, highlight significant differences between SN 2009E and the prototypical SN 1987A. Modelling the data of SN 2009E allows us to constrain the explosion parameters and the properties of the progenitor star, and compare the inferred estimates with those available for the similar SNe 1987A and 1998A. Results. The light curve of SN 2009E is less luminous than that of SN 1987A and the other members of this class, and the maximum light curve