Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven Ackerley is active.

Publication


Featured researches published by Steven Ackerley.


Science | 2008

TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis

Jemeen Sreedharan; Ian P. Blair; Vineeta Tripathi; Xun Hu; Caroline Vance; Boris Rogelj; Steven Ackerley; Jennifer C Durnall; Kelly L. Williams; Emanuele Buratti; Francisco E. Baralle; Jacqueline de Belleroche; J. Douglas Mitchell; P. Nigel Leigh; Ammar Al-Chalabi; Christopher Miller; Garth A. Nicholson; Christopher Shaw

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder characterized pathologically by ubiquitinated TAR DNA binding protein (TDP-43) inclusions. The function of TDP-43 in the nervous system is uncertain, and a mechanistic role in neurodegeneration remains speculative. We identified neighboring mutations in a highly conserved region of TARDBP in sporadic and familial ALS cases. TARDBPM337V segregated with disease within one kindred and a genome-wide scan confirmed that linkage was restricted to chromosome 1p36, which contains the TARDBP locus. Mutant forms of TDP-43 fragmented in vitro more readily than wild type and, in vivo, caused neural apoptosis and developmental delay in the chick embryo. Our evidence suggests a pathophysiological link between TDP-43 and ALS.


Annual Review of Neuroscience | 2008

Role of Axonal Transport in Neurodegenerative Diseases

Kurt J. De Vos; Andrew J. Grierson; Steven Ackerley; Christopher Miller

Many major human neurodegenerative diseases, including Alzheimers disease, Parkinsons disease, and amyotrophic lateral sclerosis (ALS), display axonal pathologies including abnormal accumulations of proteins and organelles. Such pathologies highlight damage to the axon as part of the pathogenic process and, in particular, damage to transport of cargoes through axons. Indeed, we now know that disruption of axonal transport is an early and perhaps causative event in many of these diseases. Here, we review the role of axonal transport in neurodegenerative disease.


Human Molecular Genetics | 2007

Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content

Kurt J. De Vos; Anna Chapman; Maria E. Tennant; Catherine Manser; Elizabeth L. Tudor; Kwok-Fai Lau; Janet Brownlees; Steven Ackerley; Pamela J. Shaw; Declan M. McLoughlin; Christopher Shaw; P. Nigel Leigh; Christopher Miller; Andrew J. Grierson

Amyotrophic lateral sclerosis (ALS) is a late-onset neurological disorder characterized by death of motoneurons. Mutations in Cu/Zn superoxide dismutase-1 (SOD1) cause familial ALS but the mechanisms whereby they induce disease are not fully understood. Here, we use time-lapse microscopy to monitor for the first time the effect of mutant SOD1 on fast axonal transport (FAT) of bona fide cargoes in living neurons. We analyzed FAT of mitochondria that are a known target for damage by mutant SOD1 and also of membrane-bound organelles (MBOs) using EGFP-tagged amyloid precursor protein as a marker. We studied FAT in motor neurons derived from SOD1G93A transgenic mice that are a model of ALS and also in cortical neurons transfected with SOD1G93A and three further ALS-associated SOD1 mutants. We find that mutant SOD1 damages transport of both mitochondria and MBOs, and that the precise details of this damage are cargo-specific. Thus, mutant SOD1 reduces transport of MBOs in both anterograde and retrograde directions, whereas mitochondrial transport is selectively reduced in the anterograde direction. Analyses of the characteristics of mitochondrial FAT revealed that reduced anterograde movement involved defects in anterograde motor function. The selective inhibition of anterograde mitochondrial FAT enhanced their net retrograde movement to deplete mitochondria in axons. Mitochondria in mutant SOD1 expressing cells also displayed features of damage. Together, such changes to mitochondrial function and distribution are likely to compromise axonal function. These alterations represent some of the earliest pathological features so far reported in neurons of mutant SOD1 transgenic mice.


Journal of Cell Biology | 2003

Neurofilament heavy chain side arm phosphorylation regulates axonal transport of neurofilaments

Steven Ackerley; Paul Thornhill; Andrew J. Grierson; Janet Brownlees; Brian H. Anderton; P. Nigel Leigh; Christopher Shaw; Christopher Miller

Neurofilaments possess side arms that comprise the carboxy-terminal domains of neurofilament middle and heavy chains (NFM and NFH); that of NFH is heavily phosphorylated in axons. Here, we demonstrate that phosphorylation of NFH side arms is a mechanism for regulating transport of neurofilaments through axons. Mutants in which known NFH phosphorylation sites were mutated to preclude phosphorylation or mimic permanent phosphorylation display altered rates of transport in a bulk transport assay. Similarly, application of roscovitine, an inhibitor of the NFH side arm kinase Cdk5/p35, accelerates neurofilament transport. Analyses of neurofilament movement in transfected living neurons demonstrated that a mutant mimicking permanent phosphorylation spent a higher proportion of time pausing than one that could not be phosphorylated. Thus, phosphorylation of NFH slows neurofilament transport, and this is due to increased pausing in neurofilament movement.


Human Molecular Genetics | 2012

VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis

Kurt J. De Vos; Gábor M. Mórotz; Radu Stoica; Elizabeth L. Tudor; Kwok-Fai Lau; Steven Ackerley; Alice Warley; Christopher Shaw; Christopher Miller

A proline to serine substitution at position 56 in the gene encoding vesicle-associated membrane protein-associated protein B (VAPB) causes some dominantly inherited familial forms of motor neuron disease including amyotrophic lateral sclerosis (ALS) type-8. VAPB is an integral endoplasmic reticulum (ER) protein whose amino-terminus projects into the cytosol. Overexpression of ALS mutant VAPBP56S disrupts ER structure but the mechanisms by which it induces disease are not properly understood. Here we show that VAPB interacts with the outer mitochondrial membrane protein, protein tyrosine phosphatase-interacting protein 51 (PTPIP51). ER and mitochondria are both stores for intracellular calcium (Ca2+) and Ca2+ exchange between these organelles occurs at regions of ER that are closely apposed to mitochondria. These are termed mitochondria-associated membranes (MAM). We demonstrate that VAPB is a MAM protein and that loss of either VAPB or PTPIP51 perturbs uptake of Ca2+ by mitochondria following release from ER stores. Finally, we demonstrate that VAPBP56S has altered binding to PTPIP51 and increases Ca2+ uptake by mitochondria following release from ER stores. Damage to ER, mitochondria and Ca2+ homeostasis are all seen in ALS and we discuss the implications of our findings in this context.


Journal of Cell Science | 2004

Parkinson's disease alpha-synuclein mutations exhibit defective axonal transport in cultured neurons

Anirban R. Saha; Josephine Hill; Michelle A. Utton; Ayodeji A. Asuni; Steven Ackerley; Andrew J. Grierson; Christopher Miller; Alun M. Davies; Vladimir L. Buchman; Brian H. Anderton; Diane P. Hanger

α-Synuclein is a major protein constituent of Lewy bodies and mutations in α-synuclein cause familial autosomal dominant Parkinsons disease. One explanation for the formation of perikaryal and neuritic aggregates of α-synuclein, which is a presynaptic protein, is that the mutations disrupt α-synuclein transport and lead to its proximal accumulation. We found that mutant forms of α-synuclein, either associated with Parkinsons disease (A30P or A53T) or mimicking defined serine, but not tyrosine, phosphorylation states exhibit reduced axonal transport following transfection into cultured neurons. Furthermore, transfection of A30P, but not wild-type, α-synuclein results in accumulation of the protein proximal to the cell body. We propose that the reduced axonal transport exhibited by the Parkinsons disease-associated α-synuclein mutants examined in this study might contribute to perikaryal accumulation of α-synuclein and hence Lewy body formation and neuritic abnormalities in diseased brain.


Molecular and Cellular Neuroscience | 2004

p38α stress-activated protein kinase phosphorylates neurofilaments and is associated with neurofilament pathology in amyotrophic lateral sclerosis

Steven Ackerley; Andrew J. Grierson; S Banner; Michael S. Perkinton; Janet Brownlees; Helen Byers; Malcolm Ward; Paul Thornhill; Kader Hussain; Jennifer S Waby; Brian H. Anderton; Jonathan D. Cooper; Colin Dingwall; P. Nigel Leigh; Christopher Shaw; Christopher Miller

Abstract Neurofilament middle and heavy chains (NFM and NFH) are heavily phosphorylated on their carboxy-terminal side-arm domains in axons. The mechanisms that regulate this phosphorylation are complex. Here, we demonstrate that p38α, a member of the stress-activated protein kinase family, will phosphorylate NFM and NFH on their side-arm domains. Aberrant accumulations of neurofilaments containing phosphorylated NFM and NFH side-arms are a pathological feature of amyotrophic lateral sclerosis (ALS) and we also demonstrate that p38α and active forms of p38 family kinases are associated with these accumulations. This is the case for sporadic and familial forms of ALS and also in a transgenic mouse model of ALS caused by expression of mutant superoxide dismutase-1 (SOD1). Thus, p38 kinases may contribute to the aberrant phosphorylation of NFM and NFH side-arms in ALS.


Human Molecular Genetics | 2012

Amyotrophic lateral sclerosis-associated mutant VAPBP56S perturbs calcium homeostasis to disrupt axonal transport of mitochondria

Gábor M. Mórotz; Kurt J. De Vos; Alessio Vagnoni; Steven Ackerley; Christopher Shaw; Christopher Miller

A proline-to-serine substitution at position 56 in the gene encoding vesicle-associated membrane protein-associated protein B (VAPB; VAPBP56S) causes some dominantly inherited familial forms of motor neuron disease, including amyotrophic lateral sclerosis (ALS) type-8. Here, we show that expression of ALS mutant VAPBP56S but not wild-type VAPB in neurons selectively disrupts anterograde axonal transport of mitochondria. VAPBP56S-induced disruption of mitochondrial transport involved reductions in the frequency, velocity and persistence of anterograde mitochondrial movement. Anterograde axonal transport of mitochondria is mediated by the microtubule-based molecular motor kinesin-1. Attachment of kinesin-1 to mitochondria involves the outer mitochondrial membrane protein mitochondrial Rho GTPase-1 (Miro1) which acts as a sensor for cytosolic calcium levels ([Ca2+]c); elevated [Ca2+]c disrupts mitochondrial transport via an effect on Miro1. To gain insight into the mechanisms underlying the VAPBP56S effect on mitochondrial transport, we monitored [Ca2+]c levels in VAPBP56S-expressing neurons. Expression of VAPBP56S but not VAPB increased resting [Ca2+]c and this was associated with a reduction in the amounts of tubulin but not kinesin-1 that were associated with Miro1. Moreover, expression of a Ca2+ insensitive mutant of Miro1 rescued defective mitochondrial axonal transport and restored the amounts of tubulin associated with the Miro1/kinesin-1 complex to normal in VAPBP56S-expressing cells. Our results suggest that ALS mutant VAPBP56S perturbs anterograde mitochondrial axonal transport by disrupting Ca2+ homeostasis and effecting the Miro1/kinesin-1 interaction with tubulin.


Neuroscience | 2010

Amyotrophic lateral sclerosis mutant vesicle-associated membrane protein-associated protein-B transgenic mice develop TAR-DNA-binding protein-43 pathology.

Elizabeth L. Tudor; C.M. Galtrey; Michael S. Perkinton; Kwok-Fai Lau; K.J. De Vos; Jacqueline C. Mitchell; Steven Ackerley; Tibor Hortobágyi; E. Vámos; P N Leigh; C. Klasen; Declan M. McLoughlin; Christopher Shaw; Christopher Miller

Cytoplasmic ubiquitin-positive inclusions containing TAR-DNA-binding protein-43 (TDP-43) within motor neurons are the hallmark pathology of sporadic amyotrophic lateral sclerosis (ALS). TDP-43 is a nuclear protein and the mechanisms by which it becomes mislocalized and aggregated in ALS are not properly understood. A mutation in the vesicle-associated membrane protein-associated protein-B (VAPB) involving a proline to serine substitution at position 56 (VAPBP56S) is the cause of familial ALS type-8. To gain insight into the molecular mechanisms by which VAPBP56S induces disease, we created transgenic mice that express either wild-type VAPB (VAPBwt) or VAPBP56S in the nervous system. Analyses of both sets of mice revealed no overt motor phenotype nor alterations in survival. However, VAPBP56S but not VAPBwt transgenic mice develop cytoplasmic TDP-43 accumulations within spinal cord motor neurons that were first detected at 18 months of age. Our results suggest a link between abnormal VAPBP56S function and TDP-43 mislocalization.


Human Molecular Genetics | 2010

Dismutase-competent SOD1 mutant accumulation in myelinating Schwann cells is not detrimental to normal or transgenic ALS model mice.

Bradley J. Turner; Steven Ackerley; Kay E. Davies; Kevin Talbot

Mutant superoxide dismutase 1 (SOD1) action within non-neuronal cells is implicated in damage to spinal motor neurons in a genetic form of amyotrophic lateral sclerosis (ALS). Central nervous system glial cells such as astrocytes and microglia drive progression in transgenic mutant SOD1 mice, however, the role of myelinating glia remains unclear. Specifically, peripheral myelinating glial cells are likely candidates for mediating degeneration of distal synapses and axons of motor neurons in ALS. Here, we examine the potential contribution of peripheral axon ensheathing Schwann cells to ALS by constructing transgenic mice expressing dismutase active mutant SOD1(G93A) driven by the myelin protein zero (P0) promoter. In this model, mutant SOD1 accumulation in Schwann cells was comparable to levels in mice ubiquitously expressing a SOD1(G93A) transgene that become paralysed. Growth, locomotion and survival of these P0-SOD1(G93A) mice were indistinguishable from normal animals. There was no evidence for spinal motor neuron loss, distal axonal degeneration and p75 neurotrophin receptor (p75(NTR)) upregulation in the periphery of P0-SOD1(G93A) mice, unlike transgenic SOD1(G93A) mice with presymptomatic p75(NTR) induction and death-signalling. Furthermore, Schwann cells were resistant to mutant SOD1 aggregation in vivo and in transfected primary cultures. Increasing mutant SOD1 synthesis in Schwann cells by cross-breeding transgenic P0-SOD1(G93A) and SOD1(G93A) mice did not affect disease onset or survival. We conclude that dismutase-competent mutant SOD1 accumulation within Schwann cells is not pathological to spinal motor neurons or deleterious to disease course in transgenic ALS model mice, in contrast to astrocytes and microglia.

Collaboration


Dive into the Steven Ackerley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Nigel Leigh

Brighton and Sussex Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kwok-Fai Lau

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge