Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven D. Hudson is active.

Publication


Featured researches published by Steven D. Hudson.


Nature | 2002

Self-organization of supramolecular helical dendrimers into complex electronic materials

Virgil Percec; Martin Glodde; Tushar K. Bera; Yoshiko Miura; Irina Shiyanovskaya; Kenneth D. Singer; Venkatachalapathy S. K. Balagurusamy; Paul A. Heiney; Ingo Schnell; Almut Rapp; Hans Wolfgang Spiess; Steven D. Hudson; H Duan

The discovery of electrically conducting organic crystals and polymers has widened the range of potential optoelectronic materials, provided these exhibit sufficiently high charge carrier mobilities and are easy to make and process. Organic single crystals have high charge carrier mobilities but are usually impractical, whereas polymers have good processability but low mobilities. Liquid crystals exhibit mobilities approaching those of single crystals and are suitable for applications, but demanding fabrication and processing methods limit their use. Here we show that the self-assembly of fluorinated tapered dendrons can drive the formation of supramolecular liquid crystals with promising optoelectronic properties from a wide range of organic materials. We find that attaching conducting organic donor or acceptor groups to the apex of the dendrons leads to supramolecular nanometre-scale columns that contain in their cores π-stacks of donors, acceptors or donor–acceptor complexes exhibiting high charge carrier mobilities. When we use functionalized dendrons and amorphous polymers carrying compatible side groups, these co-assemble so that the polymer is incorporated in the centre of the columns through donor–acceptor interactions and exhibits enhanced charge carrier mobilities. We anticipate that this simple and versatile strategy for producing conductive π-stacks of aromatic groups, surrounded by helical dendrons, will lead to a new class of supramolecular materials suitable for electronic and optoelectronic applications.


Nature | 2004

Self-assembly of amphiphilic dendritic dipeptides into helical pores

Virgil Percec; Andrés E. Dulcey; Venkatachalapathy S. K. Balagurusamy; Yoshiko Miura; Jan Smidrkal; Mihai Peterca; Sami Nummelin; Ulrica Edlund; Steven D. Hudson; Paul A. Heiney; Hu Duan; Sergei N. Magonov; Sergei A. Vinogradov

Natural pore-forming proteins act as viral helical coats and transmembrane channels, exhibit antibacterial activity and are used in synthetic systems, such as for reversible encapsulation or stochastic sensing. These diverse functions are intimately linked to protein structure. The close link between protein structure and protein function makes the design of synthetic mimics a formidable challenge, given that structure formation needs to be carefully controlled on all hierarchy levels, in solution and in the bulk. In fact, with few exceptions, synthetic pore structures capable of assembling into periodically ordered assemblies that are stable in solution and in the solid state have not yet been realized. In the case of dendrimers, covalent and non-covalent coating and assembly of a range of different structures has only yielded closed columns. Here we describe a library of amphiphilic dendritic dipeptides that self-assemble in solution and in bulk through a complex recognition process into helical pores. We find that the molecular recognition and self-assembly process is sufficiently robust to tolerate a range of modifications to the amphiphile structure, while preliminary proton transport measurements establish that the pores are functional. We expect that this class of self-assembling dendrimers will allow the design of a variety of biologically inspired systems with functional properties arising from their porous structure.


Lab on a Chip | 2006

Microfluidic approach for rapid multicomponent interfacial tensiometry

João T. Cabral; Steven D. Hudson

We report a microfluidic instrument to rapidly measure the interfacial tension of multi-component immiscible liquids. The measurement principle rests upon the deformation and retraction dynamics of drops under extensional flow and was implemented for the first time in microfluidics (S. D. Hudson et al., Appl. Phys. Lett., 2005, 87, 081905 (ref. )). Here we describe in detail the instrument design and physics and extend this principle to investigate multicomponent mixtures, specifically two-component drops of adjustable composition. This approach provides fast real-time sigma measurements (on the order of 1 s), the possibility of rapidly adjusting drop composition and utilizes small sample volumes (approximately 10 microL). The tensiometer operation is illustrated with water drops and binary drops (water/ethylene glycol mixtures) in silicone oils. The technique should be particularly valuable for high-throughput characterization of complex fluids.


Journal of the American Chemical Society | 2011

Self-Assembly of Dendronized Perylene Bisimides into Complex Helical Columns

Virgil Percec; Mihai Peterca; Timur Tadjiev; Xiangbing Zeng; Goran Ungar; Pawaret Leowanawat; Emad Aqad; Mohammad R. Imam; Brad M. Rosen; Ümit Akbey; Robert Graf; Sivakumar Sekharan; Daniel Sebastiani; Hans Wolfgang Spiess; Paul A. Heiney; Steven D. Hudson

The synthesis of perylene 3,4:9,10-tetracarboxylic acid bisimides (PBIs) dendronized with first-generation dendrons containing 0 to 4 methylenic units (m) between the imide group and the dendron, (3,4,5)12G1-m-PBI, is reported. Structural analysis of their self-organized arrays by DSC, X-ray diffraction, molecular modeling, and solid-state (1)H NMR was carried out on oriented samples with heating and cooling rates of 20 to 0.2 °C/min. At high temperature, (3,4,5)12G1-m-PBI self-assemble into 2D-hexagonal columnar phases with intracolumnar order. At low temperature, they form orthorhombic (m = 0, 2, 3, 4) and monoclinic (m = 1) columnar arrays with 3D periodicity. The orthorhombic phase has symmetry close to hexagonal. For m = 0, 2, 3, 4 ,they consist of tetramers as basic units. The tetramers contain a pair of two molecules arranged side by side and another pair in the next stratum of the column, turned upside-down and rotated around the column axis at different angles for different m. In contrast, for m = 1, there is only one molecule in each stratum, with a four-strata 2(1) helical repeat. All molecules face up in one column, and down in the second column, of the monoclinic cell. This allows close and extended π-stacking, unlike in the disruptive up-down alteration from the case of m = 0, 2, 3, 4. Most of the 3D structures were observed only by cooling at rates of 1 °C/min or less. This complex helical self-assembly is representative for other classes of dendronized PBIs investigated for organic electronics and solar cells.


Journal of the American Chemical Society | 2008

Hollow Spherical Supramolecular Dendrimers

Virgil Percec; Mihai Peterca; Andrés E. Dulcey; Mohammad R. Imam; Steven D. Hudson; Sami Nummelin; Peter Adelman; Paul A. Heiney

The synthesis of a library containing 12 conical dendrons that self-assemble into hollow spherical supramolecular dendrimers is reported. The design principles for this library were accessed by development of a method that allows the identification of hollow spheres, followed by structural and retrostructural analysis of their Pm3n cubic lattice. The first hollow spherical supramolecular dendrimer was made by replacing the tapered dendron, from the previously reported tapered dendritic dipeptide that self-assembled into helical pores, with its constitutional isomeric conical dendron. This strategy generated a conical dendritic dipeptide that self-assembled into a hollow spherical supramolecular dendrimer that self-organizes in a Pm3n cubic lattice. Other examples of hollow spheres were assembled from conical dendrons without a dipeptide at their apex. These are conical dendrons originated from tapered dendrons containing additional benzyl ether groups at their apex. The inner part of the hollow sphere assembled from the dipeptide resembles the path of a spherical helix or loxodrome and, therefore, is chiral. The spheres assembled from other conical dendrons are nonhelical, even when they contain stereocenters on the alkyl groups from their periphery. Functionalization of the apex of the conical dendrons with diethylene glycol allowed the encapsulation of LiOTf and RbOTf in the center of the hollow sphere. These experiments showed that hollow spheres function as supramolecular dendritic capsules and therefore are expected to display functions complementary to those of other related molecular and supramolecular structures.


Applied Physics Letters | 2005

Microfluidic interfacial tensiometry

Steven D. Hudson; João T. Cabral; William J. Goodrum; Kathryn L. Beers; Eric J. Amis

A microfluidic approach to measure interfacial tension σ of immiscible fluids rapidly is reported. This method rests upon quantitative real-time analysis of two-phase flow and drop-shape dynamics. Drops of prescribed dimension and spacing are produced, accelerated, and deformed under extensional flow. These measurements compare well with existing published data and demonstrate a wide range of accessible interfacial tension (e.g., from 2.5 to 60mN∕m).


Journal of the American Chemical Society | 2011

Self-Repairing Complex Helical Columns Generated via Kinetically Controlled Self-Assembly of Dendronized Perylene Bisimides

Virgil Percec; Steven D. Hudson; Mihai Peterca; Pawaret Leowanawat; Emad Aqad; Robert Graf; Hans Wolfgang Spiess; Xiangbing Zeng; Goran Ungar; Paul A. Heiney

The dendronized perylene 3,4:9,10-tetracarboxylic acid bisimide (PBI), (3,4,5)12G1-3-PBI, was recently reported to self-assemble in complex helical columns containing tetramers of PBI as basic repeat unit. These tetramers contain a pair of two molecules arranged side-by-side and another pair in the next stratum of the column turned upside-down and rotated around the column axis. Intra- and intertetramer rotation angles and stacking distances are different. At high temperature, (3,4,5)12G1-3-PBI self-assembles via a thermodynamically controlled process in a 2D hexagonal columnar phase while at low temperature in a 3D orthorhombic columnar array via a kinetically controlled process. Here, we report the synthesis and structural analysis, by a combination of differential scanning calorimetry, X-ray and electron diffraction, and solid-state NMR performed at different temperatures, on the supramolecular structures generated by a library of (3,4,5)nG1-3-PBI with n = 14-4. For n = 11-8, the kinetically controlled self-assembly from low temperature changes in a thermodynamically controlled process, while the orthorhombic columnar array for n = 9 and 8 transforms from the thermodynamic product into the kinetic product. The new thermodynamic product at low temperature for n = 9, 8 is a self-repaired helical column with an intra- and intertetramer distance of 3.5 Å forming a 3D monoclinic periodic array via a kinetically controlled self-assembly process. The complex dynamic process leading to this reorganization was elucidated by solid-state NMR and X-ray diffraction. This discovery is important for the field of self-assembly and for the molecular design of supramolecular electronics and solar cell.


Applied Physics Letters | 2004

Microfluidic analog of the four-roll mill

Steven D. Hudson; F. R. Phelan; Matthew D. Handler; João T. Cabral; Kalman B. Migler; Eric J. Amis

We describe a microfluidic trap, for analysis of fluids and suspensions, that simulates the function of a four-roll mill, a rheological tool with adjustable flow type and rate. These flow characteristics were designed with the assistance of flow simulations and are measured here by micro-particle-image-velocimetry. This miniature device permits microscopic manipulations and measurements (e.g., of cells, particles, and drops) and it is capable of a range of flow types, including simple shear.


Physics of Fluids | 2003

Wall migration and shear-induced diffusion of fluid droplets in emulsions

Steven D. Hudson

The spatial distribution of drops in multiphase Stokes flow is derived theoretically as a function of two dimensionless parameters, accounting for wall migration, buoyancy, and shear-induced diffusion. The wall migration effect, which drives drops away from the walls and toward the center of the gap, is often significant even when droplets are 100 times smaller than the gap. By comparison with the experimental drop concentration profile, the shear-induced down-gradient diffusivity is measured and found to be approximately four to five times larger than the prediction for drop self-diffusivity. These are the first such measurements of the diffusivity of drops with clean interfaces and contrast markedly with previous measurements on surfactant-laden drops. Nonuniform concentration along the vorticity axis is also investigated briefly.


Journal of Colloid and Interface Science | 2003

The effect of surfactant on the efficiency of shear-induced drop coalescence

Steven D. Hudson; Alex M. Jamieson; Brian E Burkhart

The volume-averaged shear-induced drop-coalescence efficiency epsilonv is measured by in situ videomicroscopy of blends of poly(propylene glycol) and poly(ethylene glycol), emulsified with poly(ethyleneglycol-b-propyleneoxide-b-ethyleneglycol) block copolymer surfactant. Adsorption of copolymer to the immiscible blend interface is indicated by a reduction in the interfacial tension, measured by the drop retraction method. The effects of temperature, copolymer molecular weight, copolymer concentration, and capillary number Ca are explored. At small Ca, epsilonv is essentially independent of shear rate and drop size, and depends mainly on the solubility, diffusivity, and surface pressure of the surfactant, indicating that drop trajectories during flow are perturbed by surfactant Marangoni stresses that are controlled by the diffusion-limited sorption of surfactant. At larger Ca, epsilonv approaches zero. This arrest of coalescence is associated with the onset of slight deformation of the drops during their collision, and drainage of a film of continuous fluid between them. The effect of the surfactant, though significant, saturates even while the amount of surfactant adsorbed to the interface is quite small. Governing dimensionless parameters, associated material parameters and the behavior of more insoluble surfactants are discussed.

Collaboration


Dive into the Steven D. Hudson's collaboration.

Top Co-Authors

Avatar

Virgil Percec

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Erik K. Hobbie

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Paul A. Heiney

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey A. Fagan

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Jack F. Douglas

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Jai A. Pathak

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Jeffrey D. Martin

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Alex M. Jamieson

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge