Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven D. Zaugg is active.

Publication


Featured researches published by Steven D. Zaugg.


Science of The Total Environment | 2008

A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States - II) Untreated drinking water sources

Michael J. Focazio; Dana W. Kolpin; Kimberlee K. Barnes; Edward T. Furlong; Michael T. Meyer; Steven D. Zaugg; Larry B. Barber; Michael Thurman

Numerous studies have shown that a variety of manufactured and natural organic compounds such as pharmaceuticals, steroids, surfactants, flame retardants, fragrances, plasticizers and other chemicals often associated with wastewaters have been detected in the vicinity of municipal wastewater discharges and livestock agricultural facilities. To provide new data and insights about the environmental presence of some of these chemicals in untreated sources of drinking water in the United States targeted sites were sampled and analyzed for 100 analytes with sub-parts per billion detection capabilities. The sites included 25 ground- and 49 surface-water sources of drinking water serving populations ranging from one family to over 8 million people. Sixty-three of the 100 targeted chemicals were detected in at least one water sample. Interestingly, in spite of the low detection levels 60% of the 36 pharmaceuticals (including prescription drugs and antibiotics) analyzed were not detected in any water sample. The five most frequently detected chemicals targeted in surface water were: cholesterol (59%, natural sterol), metolachlor (53%, herbicide), cotinine (51%, nicotine metabolite), beta-sitosterol (37%, natural plant sterol), and 1,7-dimethylxanthine (27%, caffeine metabolite); and in ground water: tetrachloroethylene (24%, solvent), carbamazepine (20%, pharmaceutical), bisphenol-A (20%, plasticizer), 1,7-dimethylxanthine (16%, caffeine metabolite), and tri (2-chloroethyl) phosphate (12%, fire retardant). A median of 4 compounds were detected per site indicating that the targeted chemicals generally occur in mixtures (commonly near detection levels) in the environment and likely originate from a variety of animal and human uses and waste sources. These data will help prioritize and determine the need, if any, for future occurrence, fate and transport, and health-effects research for subsets of these chemicals and their degradates most likely to be found in water resources used for drinking water in the United States.


Science of The Total Environment | 2008

A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States — I) Groundwater

Kimberlee K. Barnes; Dana W. Kolpin; Edward T. Furlong; Steven D. Zaugg; Michael T. Meyer; Larry B. Barber

As part of the continuing effort to collect baseline information on the environmental occurrence of pharmaceuticals, and other organic wastewater contaminants (OWCs) in the Nations water resources, water samples were collected from a network of 47 groundwater sites across 18 states in 2000. All samples collected were analyzed for 65 OWCs representing a wide variety of uses and origins. Site selection focused on areas suspected to be susceptible to contamination from either animal or human wastewaters (i.e. down gradient of a landfill, unsewered residential development, or animal feedlot). Thus, sites sampled were not necessarily used as a source of drinking water but provide a variety of geohydrologic environments with potential sources of OWCs. OWCs were detected in 81% of the sites sampled, with 35 of the 65 OWCs being found at least once. The most frequently detected compounds include N,N-diethyltoluamide (35%, insect repellant), bisphenol A (30%, plasticizer), tri(2-chloroethyl) phosphate (30%, fire retardant), sulfamethoxazole (23%, veterinary and human antibiotic), and 4-octylphenol monoethoxylate (19%, detergent metabolite). Although sampling procedures were intended to ensure that all groundwater samples analyzed were indicative of aquifer conditions it is possible that detections of some OWCs could have resulted from leaching of well-construction materials and/or other site-specific conditions related to well construction and materials. Future research will be needed to identify those factors that are most important in determining the occurrence and concentrations of OWCs in groundwater.


Environmental Science & Technology | 2010

Pharmaceutical formulation facilities as sources of opioids and other pharmaceuticals to wastewater treatment plant effluents.

Patrick J. Phillips; Steven G. Smith; Dana W. Kolpin; Steven D. Zaugg; Herbert T. Buxton; Edward T. Furlong; Kathleen Esposito; Beverley Stinson

Facilities involved in the manufacture of pharmaceutical products are an under-investigated source of pharmaceuticals to the environment. Between 2004 and 2009, 35 to 38 effluent samples were collected from each of three wastewater treatment plants (WWTPs) in New York and analyzed for seven pharmaceuticals including opioids and muscle relaxants. Two WWTPs (NY2 and NY3) receive substantial flows (>20% of plant flow) from pharmaceutical formulation facilities (PFF) and one (NY1) receives no PFF flow. Samples of effluents from 23 WWTPs across the United States were analyzed once for these pharmaceuticals as part of a national survey. Maximum pharmaceutical effluent concentrations for the national survey and NY1 effluent samples were generally <1 μg/L. Four pharmaceuticals (methadone, oxycodone, butalbital, and metaxalone) in samples of NY3 effluent had median concentrations ranging from 3.4 to >400 μg/L. Maximum concentrations of oxycodone (1700 μg/L) and metaxalone (3800 μg/L) in samples from NY3 effluent exceeded 1000 μg/L. Three pharmaceuticals (butalbital, carisoprodol, and oxycodone) in samples of NY2 effluent had median concentrations ranging from 2 to 11 μg/L. These findings suggest that current manufacturing practices at these PFFs can result in pharmaceuticals concentrations from 10 to 1000 times higher than those typically found in WWTP effluents.


Environmental Science & Technology | 2013

Persistence and potential effects of complex organic contaminant mixtures in wastewater-impacted streams

Larry B. Barber; Steffanie H. Keefe; Greg Brown; Edward T. Furlong; James L. Gray; Dana W. Kolpin; Michael T. Meyer; Mark W. Sandstrom; Steven D. Zaugg

Natural and synthetic organic contaminants in municipal wastewater treatment plant (WWTP) effluents can cause ecosystem impacts, raising concerns about their persistence in receiving streams. In this study, Lagrangian sampling, in which the same approximate parcel of water is tracked as it moves downstream, was conducted at Boulder Creek, Colorado and Fourmile Creek, Iowa to determine in-stream transport and attenuation of organic contaminants discharged from two secondary WWTPs. Similar stream reaches were evaluated, and samples were collected at multiple sites during summer and spring hydrologic conditions. Travel times to the most downstream (7.4 km) site in Boulder Creek were 6.2 h during the summer and 9.3 h during the spring, and to the Fourmile Creek 8.4 km downstream site times were 18 and 8.8 h, respectively. Discharge was measured at each site, and integrated composite samples were collected and analyzed for >200 organic contaminants including metal complexing agents, nonionic surfactant degradates, personal care products, pharmaceuticals, steroidal hormones, and pesticides. The highest concentration (>100 μg L(-1)) compounds detected in both WWTP effluents were ethylenediaminetetraacetic acid and 4-nonylphenolethoxycarboxylate oligomers, both of which persisted for at least 7 km downstream from the WWTPs. Concentrations of pharmaceuticals were lower (<1 μg L(-1)), and several compounds, including carbamazepine and sulfamethoxazole, were detected throughout the study reaches. After accounting for in-stream dilution, a complex mixture of contaminants showed little attenuation and was persistent in the receiving streams at concentrations with potential ecosystem implications.


Bulletin of Environmental Contamination and Toxicology | 2009

Waste-Indicator and Pharmaceutical Compounds in Landfill-Leachate-Affected Ground Water near Elkhart, Indiana, 2000–2002

Paul M. Buszka; D. J. Yeskis; Dana W. Kolpin; Edward T. Furlong; Steven D. Zaugg; Michael T. Meyer

Four wells downgradient from a landfill near Elkhart, Indiana were sampled during 2000–2002 to evaluate the presence of waste-indicator and pharmaceutical compounds in landfill-leachate-affected ground water. Compounds detected in leachate-affected ground water included detergent metabolites (p-nonylphenol, nonylphenol monoethoxylate, nonylphenol diethoxylate, and octylphenol monoethoxylate), plasticizers (ethanol-2-butoxy-phosphate and diethylphthalate), a plastic monomer (bisphenol A), disinfectants (1,4-dichlorobenzene and triclosan), an antioxidant (5-methyl-1H-benzotriazole), three fire-retardant compounds (tributylphosphate and tri(2-chloroethyl)phosphate, and tri(dichlorisopropyl)phosphate), and several pharmaceuticals and metabolites (acetaminophen, caffeine, cotinine, 1,7-dimethylxanthine, fluoxetine, and ibuprofen). Acetaminophen, caffeine, and cotinine detections confirm prior indications of pharmaceutical and nicotinate disposal in the landfill.


Science of The Total Environment | 2013

Chemical contaminants in water and sediment near fish nesting sites in the Potomac River basin: determining potential exposures to smallmouth bass (Micropterus dolomieu).

Dana W. Kolpin; Vicki S. Blazer; James L. Gray; Michael J. Focazio; John A. Young; David A. Alvarez; Luke R. Iwanowicz; William T. Foreman; Edward T. Furlong; Gary K. Speiran; Steven D. Zaugg; Laura E. Hubbard; Michael T. Meyer; Mark W. Sandstrom; Larry B. Barber

The Potomac River basin is an area where a high prevalence of abnormalities such as testicular oocytes (TO), skin lesions, and mortality has been observed in smallmouth bass (SMB, Micropterus dolomieu). Previous research documented a variety of chemicals in regional streams, implicating chemical exposure as one plausible explanation for these biological effects. Six stream sites in the Potomac basin (and one out-of-basin reference site) were sampled to provide an assessment of chemicals in these streams. Potential early life-stage exposure to chemicals detected was assessed by collecting samples in and around SMB nesting areas. Target chemicals included those known to be associated with important agricultural and municipal wastewater sources in the Potomac basin. The prevalence and severity of TO in SMB were also measured to determine potential relations between chemistry and biological effects. A total of 39 chemicals were detected at least once in the discrete-water samples, with atrazine, caffeine, deethylatrazine, simazine, and iso-chlorotetracycline being most frequently detected. Of the most frequently detected chemicals, only caffeine was detected in water from the reference site. No biogenic hormones/sterols were detected in the discrete-water samples. In contrast, 100 chemicals (including six biogenic hormones/sterols) were found in a least one passive-water sample, with 25 being detected at all such samples. In addition, 46 chemicals (including seven biogenic hormones/sterols) were found in the bed-sediment samples, with caffeine, cholesterol, indole, para-cresol, and sitosterol detected in all such samples. The number of herbicides detected in discrete-water samples per site had a significant positive relation to TO(rank) (a nonparametric indicator of TO), with significant positive relations between TO(rank) and atrazine concentrations in discrete-water samples and to total hormone/sterol concentration in bed-sediment samples. Such significant correlations do not necessarily imply causation, as these chemical compositions and concentrations likely do not adequately reflect total SMB exposure history, particularly during critical life stages.


Environmental Toxicology and Chemistry | 2005

Widespread detection of N,N-diethyl-m-toluamide in U.S. streams: comparison with concentrations of pesticides, personal care products, and other organic wastewater compounds.

Mark W. Sandstrom; Dana W. Kolpin; E. Michael Thurman; Steven D. Zaugg

One of the most frequently detected organic chemicals in a nationwide study concerning the effects of wastewater on stream water quality conducted in the year 2000 was the widely used insect repellant N,N-diethyl-m-toluamide (DEET). It was detected at levels of 0.02 microg/L or greater in 73% of the stream sites sampled, with the selection of sampling sites being biased toward streams thought to be subject to wastewater contamination (i.e., downstream from intense urbanization and livestock production). Although DEET frequently was detected at all sites, the median concentration was low (0.05 microg/L). The highest concentrations of DEET were found in streams from the urban areas (maximum concentration, 1.1 microg/L). The results of the present study suggest that the movement of DEET to streams through wastewater-treatment systems is an important mechanism that might lead to the exposure of aquatic organisms to this chemical.


Science of The Total Environment | 2012

Earthworm bioassays and seedling emergence for monitoring toxicity, aging and bioaccumulation of anthropogenic waste indicator compounds in biosolids-amended soil

Chad A. Kinney; Bryan R. Campbell; Regina Thompson; Edward T. Furlong; Dana W. Kolpin; Mark R. Burkhardt; Steven D. Zaugg; Stephen L. Werner; Anthony G. Hay

Land application of biosolids (treated sewage sludge) can be an important route for introducing xenobiotic compounds into terrestrial environments. There is a paucity of available information on the effects of biosolids amendment on terrestrial organisms. In this study, the influence of biosolids and biosolids aging on earthworm (Eisenia fetida) reproduction and survival and lettuce (Lactuca sativa) seedling emergence was investigated. Earthworms were exposed to soils amended with varying quantities of biosolids (0, 1, 2, 3, or 4% dry mass). To investigate the influence of biosolids aging, the biosolids used in the study were aged for differing lengths of time (2 or 8 weeks) prior to exposure. All of the adult earthworms survived in the biosolids-amended soils at all concentrations that were aged for 2 weeks; however, only 20% of the adults survived in the soil amended with the highest concentration of biosolids and aged for 8 weeks. Reproduction as measured by mean number of juveniles and unhatched cocoons produced per treatment correlated inversely with biosolids concentration, although the effects were generally more pronounced in the 8-week aged biosolids-soil samples. Latent seedling emergence and reduced seedling fitness correlated inversely with biosolids concentration, but these effects were tempered in the 8-week aged versus the 2-week aged soil-biosolids mixtures. Anthropogenic waste indicator compounds (AWIs) were measured in the biosolids, biosolids-soil mixtures, and earthworm samples. Where possible, bioaccumulation factors (BAFs) were calculated or estimated. A wide variety of AWIs were detected in the biosolids (51 AWIs) and earthworm samples (≤19 AWI). The earthworms exposed to the 8-week aged biosolids-soil mixtures tended to accumulate greater quantities of AWIs compared to the 2-week aged mixture, suggesting that the bioavailability of some AWIs was enhanced with aging. The BAFs for a given AWI varied with treatment. Notably large BAFs were determined for some AWIs. For example, the maximum BAF determined for para-cresol, methyl salicylate, bisphenol-A, and cholesterol was greater than 100 in some treatments.


Journal of Aquatic Animal Health | 2010

Mortality of Centrarchid Fishes in the Potomac Drainage: Survey Results and Overview of Potential Contributing Factors

Vicki S. Blazer; Luke R. Iwanowicz; Clifford E. Starliper; Deborah D. Iwanowicz; Patricia A. Barbash; J. D. Hedrick; S. J. Reeser; John E. Mullican; Steven D. Zaugg; M. R. Burkhardt; J. Kelble

Skin lesions and spring mortality events of smallmouth bass Micropterus dolomieu and selected other species were first noted in the South Branch of the Potomac River in 2002. Since that year morbidity and mortality have also been observed in the Shenandoah and Monocacy rivers. Despite much research, no single pathogen, parasite, or chemical cause for the lesions and mortality has been identified. Numerous parasites, most commonly trematode metacercariae and myxozoans; the bacterial pathogens Aeromonas hydrophila, Aeromonas salmonicida, and Flavobacterium columnare; and largemouth bass virus have all been observed. None have been consistently isolated or observed at all sites, however, nor has any consistent microscopic pathology of the lesions been observed. A variety of histological changes associated with exposure to environmental contaminants or stressors, including intersex (testicular oocytes), high numbers of macrophage aggregates, oxidative damage, gill lesions, and epidermal papillomas, were observed. The findings indicate that selected sensitive species may be stressed by multiple factors and constantly close to the threshold between a sustainable (healthy) and nonsustainable (unhealthy) condition. Fish health is often used as an indicator of aquatic ecosystem health, and these findings raise concerns about environmental degradation within the Potomac River drainage. Unfortunately, while much information has been gained from the studies conducted to date, due to the multiple state jurisdictions involved, competing interests, and other issues, there has been no coordinated approach to identifying and mitigating the stressors. This synthesis emphasizes the need for multiyear, interdisciplinary, integrative research to identify the underlying stressors and possible management actions to enhance ecosystem health.


Science of The Total Environment | 2014

Contaminants of legacy and emerging concern in largescale suckers (Catostomus macrocheilus) and the foodweb in the lower Columbia River, Oregon and Washington, USA

Elena B. Nilsen; Steven D. Zaugg; David A. Alvarez; Ian R. Waite; Timothy D. Counihan; Jill M. Hardiman; Leticia Torres; Reynaldo Patiño; Matthew G. Mesa; Robert A. Grove

We investigated occurrence, transport pathways, and effects of polybrominated diphenyl ether (PBDE) flame retardants and other endocrine disrupting chemicals (EDCs) in aquatic media and the foodweb in the lower Columbia River. In 2009 and 2010, foodweb sampling at three sites along a gradient of contaminant exposure near Skamania (Washington), Columbia City (Oregon) and Longview (Washington) included water (via passive samplers), bed sediment, invertebrate biomass residing in sediment, a resident fish species (largescale suckers [Catostomus macrocheilus]), and eggs from osprey (Pandion haliaetus). This paper primarily reports fish tissue concentrations. In 2009, composites of fish brain, fillet, liver, stomach, and gonad tissues revealed that overall contaminant concentrations were highest in livers, followed by brain, stomach, gonad, and fillet. Concentrations of halogenated compounds in tissue samples from all three sites ranged from <1 to 400nanograms per gram of wet tissue. Several chemical classes, including PBDEs, organochlorine pesticides, and polychlorinated biphenyls (PCBs), were detected at all sites and in nearly all fish tissues sampled. In 2010, only fish livers were sampled and inter-site concentration differences were not as pronounced as in 2009. Chemical concentrations in sediments, fish tissues, and osprey eggs increased moving downstream from Skamania to the urbanized sites near Columbia City and Longview. Numerous organochlorine (OC) pesticides, both banned and currently used, and PBDEs, were present at each site in multiple media and concentrations exceeded environmental quality benchmarks in some cases. Frequently detected OC compounds included hexachlorobenzene, pentachloroanisole, dichlorodiphenyltrichloroethane (DDT) and its degradates, chlorpyrifos, and oxyfluorofen. Biomagnification of BDE47, 100, 153, and 154 occurred in largescale suckers and osprey eggs. Results support the hypothesis that contaminants in the environment lead to bioaccumulation and potential negative effects in multiple levels of the foodweb.

Collaboration


Dive into the Steven D. Zaugg's collaboration.

Top Co-Authors

Avatar

Edward T. Furlong

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Dana W. Kolpin

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Michael T. Meyer

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Larry B. Barber

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Mark R. Burkhardt

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Stephen L. Werner

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Steven G. Smith

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Chad A. Kinney

Colorado State University–Pueblo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark W. Sandstrom

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge