Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven H. Frankel is active.

Publication


Featured researches published by Steven H. Frankel.


Journal of the Acoustical Society of America | 2005

Aerodynamic transfer of energy to the vocal folds

Scott L. Thomson; Luc Mongeau; Steven H. Frankel

The aerodynamic transfer of energy from glottal airflow to vocal fold tissue during phonation was explored using complementary synthetic and numerical vocal fold models. The synthetic model was fabricated using a flexible polyurethane rubber compound. The model size, shape, and material properties were generally similar to corresponding human vocal fold characteristics. Regular, self-sustained oscillations were achieved at a frequency of approximately 120 Hz. The onset pressure was approximately 1.2 kPa. A corresponding two-dimensional finite element model was developed using geometry definitions and material properties based on the synthetic model. The finite element model upstream and downstream pressure boundary conditions were based on experimental values acquired using the synthetic model. An analysis of the fully coupled fluid and solid numerical domains included flow separation and unsteady effects. The numerical results provided detailed flow data that was used to investigate aerodynamic energy transfer mechanisms. The results support the hypothesis that a cyclic variation of the orifice profile from a convergent to a divergent shape leads to a temporal asymmetry in the average wall pressure, which is the key factor for the achievement of self-sustained vocal fold oscillations. me rica.


Journal of Biomechanical Engineering-transactions of The Asme | 2003

Numerical Modeling of Pulsatile Turbulent Flow in Stenotic Vessels

Sonu S. Varghese; Steven H. Frankel

Pulsatile turbulent flow in stenotic vessels has been numerically modeled using the Reynolds-averaged Navier-Stokes equation approach. The commercially available computational fluid dynamics code (CFD), FLUENT, has been used for these studies. Two different experiments were modeled involving pulsatile flow through axisymmetric stenoses. Four different turbulence models were employed to study their influence on the results. It was found that the low Reynolds number k-omega turbulence model was in much better agreement with previous experimental measurements than both the low and high Reynolds number versions of the RNG (renormalization-group theory) k-epsilon turbulence model and the standard k-epsilon model, with regard to predicting the mean flow distal to the stenosis including aspects of the vortex shedding process and the turbulent flow field. All models predicted a wall shear stress peak at the throat of the stenosis with minimum values observed distal to the stenosis where flow separation occurred.


Physics of Fluids | 1998

Large eddy simulation of a nonpremixed reacting jet: Application and assessment of subgrid-scale combustion models

Paul E. Desjardin; Steven H. Frankel

Results from large eddy simulations (LES) and direct numerical simulations (DNS) of a two-dimensional, spatially developing, compressible planar free jet undergoing an idealized, exothermic, chemical reaction of the type F+rOx→(1+r)P are presented in order to assess several subgrid-scale (SGS) combustion models. Both a priori and a posteriori assessments are conducted. The SGS turbulence model used is the dynamic Smagorinsky model (DSM). Two classes of SGS combustion models are employed in this study. These include the conserved scalar approach and the direct closure approach. Specifically, the SGS combustion models involve several forms of direct filtered reaction rate closures, including a scale similarity filtered reaction rate model (SSFRRM), and a mixing controlled strained laminar flamelet model (SLFM) in the form of thermochemical state relationships, obtained from the DNS, and two assumed forms for the subgrid mixture fraction filtered density function (FDF). In general, LES results are in reasona...


Journal of the Acoustical Society of America | 2002

Computational aeroacoustics of phonation, Part I: Computational methods and sound generation mechanisms

Wei Zhao; Cheng Zhang; Steven H. Frankel; Luc Mongeau

The aerodynamic generation of sound during phonation was studied using direct numerical simulations of the airflow and the sound field in a rigid pipe with a modulated orifice. Forced oscillations with an imposed wall motion were considered, neglecting fluid-structure interactions. The compressible, two-dimensional, axisymmetric form of the Navier-Stokes equations were numerically integrated using highly accurate finite difference methods. A moving grid was used to model the effects of the moving walls. The geometry and flow conditions were selected to approximate the flow within an idealized human glottis and vocal tract during phonation. Direct simulations of the flow and farfield sound were performed for several wall motion programs, and flow conditions. An acoustic analogy based on the Ffowcs Williams-Hawkings equation was then used to decompose the acoustic source into its monopole, dipole, and quadrupole contributions for analysis. The predictions of the farfield acoustic pressure using the acoustic analogy were in excellent agreement with results from the direct numerical simulations. It was found that the dominant sound production mechanism was a dipole induced by the net force exerted by the surfaces of the glottis walls on the fluid along the direction of sound wave propagation. A monopole mechanism, specifically sound from the volume of fluid displaced by the wall motion, was found to be comparatively weak at the frequency considered (125 Hz). The orifice geometry was found to have only a weak influence on the amplitude of the radiated sound.


Journal of Fluid Mechanics | 2007

Direct numerical simulation of stenotic flows, Part 1: Steady flow

Sonu S. Varghese; Steven H. Frankel; Paul F. Fischer

Direct numerical simulations (DNS) of steady and pulsatile flow through 75% (by area reduction) stenosed tubes have been performed, with the motivation of understanding the biofluid dynamics of actual stenosed arteries. The spectral-element method, providing geometric flexibility and high-order spectral accuracy, was employed for the simulations. The steady flow results are examined here while the pulsatile flow analysis is dealt with in Part 2 of this study. At inlet Reynolds numbers of 500 and 1000, DNS predict a laminar flow field downstream of an axisymmetric stenosis and comparison to previous experiments show good agreement in the immediate post-stenotic region. The introduction of a geometric perturbation within the current model, in the form of a stenosis eccentricity that was 5% of the main vessel diameter at the throat, resulted in breaking of the symmetry of the post-stenotic flow field by causing the jet to deflect towards the side of the eccentricity and, at a high enough Reynolds number of 1000, jet breakdown occurred in the downstream region. The flow transitioned to turbulence about five diameters away from the stenosis, with velocity spectra taking on a broadband nature, acquiring a -5/3 slope that is typical of turbulent flows. Transition was accomplished by the breaking up of streamwise, hairpin vortices into a localized turbulent spot, reminiscent of the turbulent puff observed in pipe flow transition, within which r.m.s. velocity and turbulent energy levels were highest. Turbulent fluctuations and energy levels rapidly decayed beyond this region and flow relaminarized. The acceleration of the fluid through the stenosis resulted in wall shear stress (WSS) magnitudes that exceeded upstream levels by more than a factor of 30 but low WSS levels accompanied the flow separation zones that formed immediately downstream of the stenosis. Transition to turbulence in the case of the eccentric stenosis was found to be manifested as large temporal and spatial gradients of shear stress, with significant axial and circumferential variations in instantaneous WSS.


aiaa/ceas aeroacoustics conference | 2001

Large Eddy Simulations of Sound Radiation from Subsonic Turbulent Jets

Wei Zhao; Steven H. Frankel; Luc Mongeau

Large eddy simulations (LES) of subsonic turbulent jets, including the near-field flow and far-field sound radiation, were performed using two different subgrid-scale turbulence models. Two different cases were considered. As a validation case, predictions from a Mach 0.9, Reynolds number 3.6 × 10 3 randomly forced turbulent jet were performed. Both the near-field velocity statistics and far-field sound directivity were found to be in excellent agreement with previous experimental data and direct numerical simulation (DNS) results. The second case involved a Mach 0.4, Reynolds number 5 x 10 3 harmonically forced jet. Both axisymmetric and azimuthal inlet disturbances were imposed to facilitate detailed comparisons to recent DNS of axisymmetric jet sound, and to highlight the effects of small-scale turbulence. As part of this second case, the validity of Kirchhoffs method for far-field sound prediction was also assessed in conjunction with LES and the effect of the subgrid-scale turbulence model on sound radiation was examined. The sound source location and levels were different between the three-dimensional turbulent jets and similar two-dimensional axisymmetric laminar jets. Far-field sound radiation predictions, obtained using Kirchhoffs method, were in good agreement with the directly predicted LES results. LES predictions obtained with the dynamic Smagorinsky and the dynamic mixed subgrid-scale turbulence models were similar, although the mixed model resulted in higher turbulence and sound levels. The directivity was not uniform as predicted by Lighthills theory for a fully turbulent jet, but exhibited a preferred radiation angle between 35 and 70 deg in agreement with reported experimental data from an acoustically excited jet.


Journal of Fluid Mechanics | 2007

Direct numerical simulation of stenotic flows. Part 2. Pulsatile flow

Sonu S. Varghese; Steven H. Frankel; Paul F. Fischer

Direct numerical simulations (DNS) of stenotic flows under conditions of steady inlet flow were discussed in Part 1 of this study. DNS of pulsatile flow through the 75 % stenosed tube (by area) employed for the computations in Part 1 is examined here. Analogous to the steady flow results, DNS predicts a laminar post-stenotic flow field in the case of pulsatile flow through the axisymmetric stenosis model, in contrast to previous experiments, in which intermittent disturbed flow regions and turbulent breakdown were observed in the downstream region. The introduction of a stenosis eccentricity, that was 5 % of the main vessel diameter at the throat, resulted in periodic, localized transition to turbulence. Analysis in this study indicates that the early and mid-acceleration phases of the time period cycle were relatively stable, with no turbulent activity in the post-stenotic region. However, towards the end of acceleration, the starting vortex, formed earlier as the fluid accelerated through the stenosis at the beginning of acceleration, started to break up into elongated streamwise structures. These streamwise vortices broke down at peak flow, forming a turbulent spot in the post-stenotic region. In the early part of deceleration there was intense turbulent activity within this spot. Past the mid-deceleration phase, through to minimum flow, the inlet flow lost its momentum and the flow field began to relaminarize. The start of acceleration in the following cycle saw a recurrence of the entire process of a starting structure undergoing turbulent breakdown and subsequent relaminarization of the post-stenotic flow field. Peak wall shear stress (WSS) levels occurred at the stenosis throat, with the rest of the vessel experiencing much lower levels. Turbulent breakdown at peak flow resulted in a sharp amplification of instantaneous WSS magnitudes across the region corresponding to the turbulent spot, accompanied by large axial and circumferential fluctuations, even while ensemble-averaged axial shear stresses remained mostly low and negative. WSS levels dropped rapidly after the mid-deceleration phase, when the relaminarization process took over, and were almost identical to laminar, axisymmetric shear levels through most of the acceleration phase.


Journal of the Acoustical Society of America | 2002

Computational aeroacoustics of phonation, part II: Effects of flow parameters and ventricular folds.

Cheng Zhang; Wei Zhao; Steven H. Frankel; Luc Mongeau

The results are described of the second part of an ongoing study aimed at performing direct numerical simulations of translaryngeal flows during phonation. The use of accurate numerical schemes allows the radiated sound to be calculated directly, without the need for acoustic analogy models. The goal is to develop a better understanding of this class of flow, and of the basic sound generation mechanisms involved in phonation. In the present study, the effects of subglottal pressure and of glottal oscillation frequency on the near-field flow and farfield sound were investigated. The effects of the presence of the ventricular folds downstream of the oscillating glottal region were also examined. The results highlighted the effects of subglottal pressure and oscillation frequency on the jet vortical structure, wall pressure and shear stress, and sound radiation. Jet impingement on the ventricular folds introduced additional dipole sources similar to those observed in problems involving grazing flows over cavities.


The Journal of Thoracic and Cardiovascular Surgery | 2010

Cavopulmonary assist for the univentricular Fontan circulation: Von Kármán viscous impeller pump

Mark D. Rodefeld; Brandon W. Coats; Travis C. Fisher; Guruprasad A. Giridharan; Jun Chen; John W. Brown; Steven H. Frankel

OBJECTIVE In a univentricular Fontan circulation, modest augmentation of existing cavopulmonary pressure head (2-5 mm Hg) would reduce systemic venous pressure, increase ventricular filling, and thus substantially improve circulatory status. An ideal means of providing mechanical cavopulmonary support does not exist. We hypothesized that a viscous impeller pump, based on the von Kármán viscous pump principle, is optimal for this role. METHODS A 3-dimensional computational model of the total cavopulmonary connection was created. The impeller was represented as a smooth 2-sided conical actuator disk with rotation in the vena caval axis. Flow was modeled under 3 conditions: (1) passive flow with no disc; (2) passive flow with a nonrotating disk, and (3) induced flow with disc rotation (0-5K rpm). Flow patterns and hydraulic performance were examined for each case. Hydraulic performance for a vaned impeller was assessed by measuring pressure increase and induced flow over 0 to 7K rpm in a laboratory mock loop. RESULTS A nonrotating actuator disc stabilized cavopulmonary flow, reducing power loss by 88%. Disk rotation (from baseline dynamic flow of 4.4 L/min) resulted in a pressure increase of 0.03 mm Hg. A further increase in pressure of 5 to 20 mm Hg and 0 to 5 L/min flow was obtained with a vaned impeller at 0 to 7K rpm in a laboratory mock loop. CONCLUSIONS A single viscous impeller pump stabilizes and augments cavopulmonary flow in 4 directions, in the desired pressure range, without venous pathway obstruction. A viscous impeller pump applies to the existing staged protocol as a temporary bridge-to-recovery or -transplant in established univentricular Fontan circulations and may enable compressed palliation of single ventricle without the need for intermediary surgical staging or use of a systemic-to-pulmonary arterial shunt.


Combustion and Flame | 1999

Two-dimensional Large Eddy Simulation of soot formation in the near-field of a strongly radiating nonpremixed acetylene-air turbulent jet flame

Paul E. Desjardin; Steven H. Frankel

Abstract A numerical study of soot formation in the near-field of a strongly radiating, nonpremixed, acetylene–air planar jet flame is conducted using Large Eddy Simulation in two dimensions to examine coupled turbulence, soot chemistry, and radiation effects. The two-dimensional, Favre-filtered, compressible Navier-Stokes, total sensible energy and mixture fraction equations are closed using the Smagorinsky subgrid-scale (SGS) turbulence model. Major species of gas-phase combustion are obtained using a laminar flamelet model by employing experimentally obtained laminar flame state relationships for the major species mass fractions as a function of gas-phase mixture fraction. A combination of a presumed Beta filtered density function and a scale-similarity model are used to account for SGS mixture fraction and scalar dissipation fluctuations on the filtered composition and heat release rate. A soot transport and finite-rate kinetics model accounting for soot nucleation, surface growth, agglomeration, and oxidation is used. Radiation is modeled by integrating the filtered radiative transfer equation using the discrete ordinates method. Both instantaneous and time-averaged results are presented in order to highlight physical and numerical modeling issues and to examine turbulence, soot chemistry, and radiation interactions. Qualitative comparisons are made to previous numerical results and experimental data.

Collaboration


Dive into the Steven H. Frankel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge