Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven H. Spoel is active.

Publication


Featured researches published by Steven H. Spoel.


The Plant Cell | 2003

NPR1 Modulates Cross-Talk between Salicylate- and Jasmonate-Dependent Defense Pathways through a Novel Function in the Cytosol

Steven H. Spoel; Annemart Koornneef; Susanne M. C. Claessens; Jerome Korzelius; Johan A. Van Pelt; Martin J. Mueller; Antony Buchala; Jean-Pierre Métraux; Rebecca L. Brown; Kemal Kazan; L.C. van Loon; Xinnian Dong; Corné M. J. Pieterse

Plant defenses against pathogens and insects are regulated differentially by cross-communicating signal transduction pathways in which salicylic acid (SA) and jasmonic acid (JA) play key roles. In this study, we investigated the molecular mechanism of the antagonistic effect of SA on JA signaling. Arabidopsis plants unable to accumulate SA produced 25-fold higher levels of JA and showed enhanced expression of the JA-responsive genes LOX2, PDF1.2, and VSP in response to infection by Pseudomonas syringae pv tomato DC3000, indicating that in wild-type plants, pathogen-induced SA accumulation is associated with the suppression of JA signaling. Analysis of the Arabidopsis mutant npr1, which is impaired in SA signal transduction, revealed that the antagonistic effect of SA on JA signaling requires the regulatory protein NPR1. Nuclear localization of NPR1, which is essential for SA-mediated defense gene expression, is not required for the suppression of JA signaling, indicating that cross-talk between SA and JA is modulated through a novel function of NPR1 in the cytosol.


Science | 2008

Plant Immunity Requires Conformational Charges of NPR1 via S-Nitrosylation and Thioredoxins

Yasuomi Tada; Steven H. Spoel; Karolina M. Pajerowska-Mukhtar; Zhonglin Mou; Junqi Song; Chun Wang; Jianru Zuo; Xinnian Dong

Changes in redox status have been observed during immune responses in different organisms, but the associated signaling mechanisms are poorly understood. In plants, these redox changes regulate the conformation of NPR1, a master regulator of salicylic acid (SA)–mediated defense genes. NPR1 is sequestered in the cytoplasm as an oligomer through intermolecular disulfide bonds. We report that S-nitrosylation of NPR1 by S-nitrosoglutathione (GSNO) at cysteine-156 facilitates its oligomerization, which maintains protein homeostasis upon SA induction. Conversely, the SA-induced NPR1 oligomer-to-monomer reaction is catalyzed by thioredoxins (TRXs). Mutations in both NPR1 cysteine-156 and TRX compromised NPR1-mediated disease resistance. Thus, the regulation of NPR1 is through the opposing action of GSNO and TRX. These findings suggest a link between pathogen-triggered redox changes and gene regulation in plant immunity.


Nature Reviews Immunology | 2012

How do plants achieve immunity? Defence without specialized immune cells

Steven H. Spoel; Xinnian Dong

Vertebrates have evolved a sophisticated adaptive immune system that relies on an almost infinite diversity of antigen receptors that are clonally expressed by specialized immune cells that roam the circulatory system. These immune cells provide vertebrates with extraordinary antigen-specific immune capacity and memory, while minimizing self-reactivity. Plants, however, lack specialized mobile immune cells. Instead, every plant cell is thought to be capable of launching an effective immune response. So how do plants achieve specific, self-tolerant immunity and establish immune memory? Recent developments point towards a multilayered plant innate immune system comprised of self-surveillance, systemic signalling and chromosomal changes that together establish effective immunity.


Nature | 2012

NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants

Zheng Qing Fu; Shunping Yan; Abdelaty Saleh; Wei Wang; James Ruble; Nodoka Oka; Rajinikanth Mohan; Steven H. Spoel; Yasuomi Tada; Ning Zheng; Xinnian Dong

Salicylic acid (SA) is a plant immune signal produced after pathogen challenge to induce systemic acquired resistance. It is the only major plant hormone for which the receptor has not been firmly identified. Systemic acquired resistance in Arabidopsis requires the transcription cofactor nonexpresser of PR genes 1 (NPR1), the degradation of which acts as a molecular switch. Here we show that the NPR1 paralogues NPR3 and NPR4 are SA receptors that bind SA with different affinities. NPR3 and NPR4 function as adaptors of the Cullin 3 ubiquitin E3 ligase to mediate NPR1 degradation in an SA-regulated manner. Accordingly, the Arabidopsis npr3 npr4 double mutant accumulates higher levels of NPR1, and is insensitive to induction of systemic acquired resistance. Moreover, this mutant is defective in pathogen effector-triggered programmed cell death and immunity. Our study reveals the mechanism of SA perception in determining cell death and survival in response to pathogen challenge.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Regulation of tradeoffs between plant defenses against pathogens with different lifestyles

Steven H. Spoel; Jessica Johnson; Xinnian Dong

Plants activate distinct defense responses depending on the lifestyle of the attacker encountered. In these responses, salicylic acid (SA) and jasmonic acid (JA) play important signaling roles. SA induces defense against biotrophic pathogens that feed and reproduce on live host cells, whereas JA activates defense against necrotrophic pathogens that kill host cells for nutrition and reproduction. Cross-talk between these defense signaling pathways has been shown to optimize the response against a single attacker. However, its role in defense against multiple pathogens with distinct lifestyles is unknown. Here we show that infection with biotrophic Pseudomonas syringae, which induces SA-mediated defense, rendered plants more susceptible to the necrotrophic pathogen Alternaria brassicicola by suppression of the JA signaling pathway. This process was partly dependent on the cross-talk modulator NPR1. Surprisingly, this tradeoff was restricted to tissues adjacent to the site of initial infection; A. brassicicola infection in systemic tissue was not affected. Even more surprisingly, tradeoff occurred only with the virulent Pseudomonas strain. Avirulent strains that induced programmed cell death (PCD), an effective plant-resistance mechanism against biotrophs, did not cause suppression of JA-dependent defense. This result might be advantageous to the plant by preventing necrotrophic pathogen growth in tissues undergoing PCD. Our findings show that plants tightly control cross-talk between SA- and JA-dependent defenses in a previously unrecognized spatial and pathogen type-specific fashion. This process allows them to prevent unfavorable signal interactions and maximize their ability to concomitantly fend off multiple pathogens.


Cell | 2009

Proteasome-Mediated Turnover of the Transcription Coactivator NPR1 Plays Dual Roles in Regulating Plant Immunity

Steven H. Spoel; Zhonglin Mou; Yasuomi Tada; Natalie Weaver Spivey; Pascal Genschik; Xinnian Dong

Systemic acquired resistance (SAR) is a broad-spectrum plant immune response involving profound transcriptional changes that are regulated by the coactivator NPR1. Nuclear translocation of NPR1 is a critical regulatory step, but how the protein is regulated in the nucleus is unknown. Here, we show that turnover of nuclear NPR1 protein plays an important role in modulating transcription of its target genes. In the absence of pathogen challenge, NPR1 is continuously cleared from the nucleus by the proteasome, which restricts its coactivator activity to prevent untimely activation of SAR. Surprisingly, inducers of SAR promote NPR1 phosphorylation at residues Ser11/Ser15, and then facilitate its recruitment to a Cullin3-based ubiquitin ligase. Turnover of phosphorylated NPR1 is required for full induction of target genes and establishment of SAR. These in vivo data demonstrate dual roles for coactivator turnover in both preventing and stimulating gene transcription to regulate plant immunity.


Cell Host & Microbe | 2008

Making Sense of Hormone Crosstalk during Plant Immune Responses

Steven H. Spoel; Xinnian Dong

In response to biotic stress, crosstalk between plant hormonal signaling pathways prioritizes defense over other cellular functions. Some plant pathogens take advantage of this regulatory system by mimicking hormones that interfere with host immune responses to promote virulence. Here we discuss the various roles that crosstalk may play in response to pathogens with different infection strategies.


Nature | 2011

S -nitrosylation of NADPH oxidase regulates cell death in plant immunity

Byung-Wook Yun; Angela Feechan; Minghui Yin; Noor Baity Saidi; Thierry Le Bihan; Manda Yu; John W. Moore; Jeong-Gu Kang; Eunjung Kwon; Steven H. Spoel; Jacqueline A. Pallas; Gary J. Loake

Changes in redox status are a conspicuous feature of immune responses in a variety of eukaryotes, but the associated signalling mechanisms are not well understood. In plants, attempted microbial infection triggers the rapid synthesis of nitric oxide and a parallel accumulation of reactive oxygen intermediates, the latter generated by NADPH oxidases related to those responsible for the pathogen-activated respiratory burst in phagocytes. Both nitric oxide and reactive oxygen intermediates have been implicated in controlling the hypersensitive response, a programmed execution of plant cells at sites of attempted infection. However, the molecular mechanisms that underpin their function and coordinate their synthesis are unknown. Here we show genetic evidence that increases in cysteine thiols modified using nitric oxide, termed S-nitrosothiols, facilitate the hypersensitive response in the absence of the cell death agonist salicylic acid and the synthesis of reactive oxygen intermediates. Surprisingly, when concentrations of S-nitrosothiols were high, nitric oxide function also governed a negative feedback loop limiting the hypersensitive response, mediated by S-nitrosylation of the NADPH oxidase, AtRBOHD, at Cys 890, abolishing its ability to synthesize reactive oxygen intermediates. Accordingly, mutation of Cys 890 compromised S-nitrosothiol-mediated control of AtRBOHD activity, perturbing the magnitude of cell death development. This cysteine is evolutionarily conserved and specifically S-nitrosylated in both human and fly NADPH oxidase, suggesting that this mechanism may govern immune responses in both plants and animals.


Plant Physiology | 2009

Ethylene Modulates the Role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 in Cross Talk between Salicylate and Jasmonate Signaling

Antonio Leon-Reyes; Steven H. Spoel; Elvira S. De Lange; Hiroshi Abe; Masatomo Kobayashi; Shinya Tsuda; Frank F. Millenaar; Rob Welschen; Tita Ritsema; Corné M. J. Pieterse

The plant hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play crucial roles in the signaling network that regulates induced defense responses against biotic stresses. Antagonism between SA and JA operates as a mechanism to fine-tune defenses that are activated in response to multiple attackers. In Arabidopsis (Arabidopsis thaliana), NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) was demonstrated to be required for SA-mediated suppression of JA-dependent defenses. Because ET is known to enhance SA/NPR1-dependent defense responses, we investigated the role of ET in the SA-JA signal interaction. Pharmacological experiments with gaseous ET and the ET precursor 1-aminocyclopropane-1-carboxylic acid showed that ET potentiated SA/NPR1-dependent PATHOGENESIS-RELATED1 transcription, while it rendered the antagonistic effect of SA on methyl jasmonate-induced PDF1.2 and VSP2 expression NPR1 independent. This overriding effect of ET on NPR1 function in SA-JA cross talk was absent in the npr1-1/ein2-1 double mutant, demonstrating that it is mediated via ET signaling. Abiotic and biotic induction of the ET response similarly abolished the NPR1 dependency of the SA-JA signal interaction. Furthermore, JA-dependent resistance against biotic attackers was antagonized by SA in an NPR1-dependent fashion only when the plant-attacker combination did not result in the production of high levels of endogenous ET. Hence, the interaction between ET and NPR1 plays an important modulating role in the fine tuning of the defense signaling network that is activated upon pathogen and insect attack. Our results suggest a model in which ET modulates the NPR1 dependency of SA-JA antagonism, possibly to compensate for enhanced allocation of NPR1 to function in SA-dependent activation of PR genes.


New Phytologist | 2014

Nitric oxide function in plant biology: a redox cue in deconvolution

Manda Yu; Lorenzo Lamattina; Steven H. Spoel; Gary J. Loake

Nitric oxide (NO), a gaseous, redox-active small molecule, is gradually becoming established as a central regulator of growth, development, immunity and environmental interactions in plants. A major route for the transfer of NO bioactivity is S-nitrosylation, the covalent attachment of an NO moiety to a protein cysteine thiol to form an S-nitrosothiol (SNO). This chemical transformation is rapidly emerging as a prototypic, redox-based post-translational modification integral to the life of plants. Here we review the myriad roles of NO and SNOs in plant biology and, where known, the molecular mechanisms underpining their activity.

Collaboration


Dive into the Steven H. Spoel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xinnian Dong

Gordon and Betty Moore Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manda Yu

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ione Salgado

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Lucas Frungillo

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Adil Hussain

University of Edinburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge