Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Byung-Wook Yun is active.

Publication


Featured researches published by Byung-Wook Yun.


Proceedings of the National Academy of Sciences of the United States of America | 2005

A central role for S-nitrosothiols in plant disease resistance

Angela Feechan; Eunjung Kwon; Byung-Wook Yun; Yiqin Wang; Jacqueline A. Pallas; Gary J. Loake

Animal S-nitrosoglutathione reductase (GSNOR) governs the extent of cellular S-nitrosylation, a key redox-based posttranslational modification. Mutations in AtGSNOR1, an Arabidopsis thaliana GSNOR, modulate the extent of cellular S-nitrosothiol (SNO) formation in this model plant species. Loss of AtGSNOR1 function increased SNO levels, disabling plant defense responses conferred by distinct resistance (R) gene subclasses. Furthermore, in the absence of AtGSNOR1, both basal and nonhost disease resistance are also compromised. Conversely, increased AtGSNOR1 activity reduced SNO formation, enhancing protection against ordinarily virulent microbial pathogens. Here we demonstrate that AtGSNOR1 positively regulates the signaling network controlled by the plant immune system activator, salicylic acid. This contrasts with the function of this enzyme in mice during endotoxic shock, where GSNOR antagonizes inflammatory responses. Our data imply SNO formation and turnover regulate multiple modes of plant disease resistance.


Nature | 2011

S -nitrosylation of NADPH oxidase regulates cell death in plant immunity

Byung-Wook Yun; Angela Feechan; Minghui Yin; Noor Baity Saidi; Thierry Le Bihan; Manda Yu; John W. Moore; Jeong-Gu Kang; Eunjung Kwon; Steven H. Spoel; Jacqueline A. Pallas; Gary J. Loake

Changes in redox status are a conspicuous feature of immune responses in a variety of eukaryotes, but the associated signalling mechanisms are not well understood. In plants, attempted microbial infection triggers the rapid synthesis of nitric oxide and a parallel accumulation of reactive oxygen intermediates, the latter generated by NADPH oxidases related to those responsible for the pathogen-activated respiratory burst in phagocytes. Both nitric oxide and reactive oxygen intermediates have been implicated in controlling the hypersensitive response, a programmed execution of plant cells at sites of attempted infection. However, the molecular mechanisms that underpin their function and coordinate their synthesis are unknown. Here we show genetic evidence that increases in cysteine thiols modified using nitric oxide, termed S-nitrosothiols, facilitate the hypersensitive response in the absence of the cell death agonist salicylic acid and the synthesis of reactive oxygen intermediates. Surprisingly, when concentrations of S-nitrosothiols were high, nitric oxide function also governed a negative feedback loop limiting the hypersensitive response, mediated by S-nitrosylation of the NADPH oxidase, AtRBOHD, at Cys 890, abolishing its ability to synthesize reactive oxygen intermediates. Accordingly, mutation of Cys 890 compromised S-nitrosothiol-mediated control of AtRBOHD activity, perturbing the magnitude of cell death development. This cysteine is evolutionarily conserved and specifically S-nitrosylated in both human and fly NADPH oxidase, suggesting that this mechanism may govern immune responses in both plants and animals.


Plant Physiology | 2008

Arabidopsis Mitogen-Activated Protein Kinase Kinases MKK1 and MKK2 Have Overlapping Functions in Defense Signaling Mediated by MEKK1, MPK4, and MKS1

Jin-Long Qiu; Lu Zhou; Byung-Wook Yun; Henrik Bjørn Nielsen; Berthe Katrine Fiil; Klaus Petersen; Jim MacKinlay; Gary J. Loake; John Mundy; Peter C. Morris

The Arabidopsis (Arabidopsis thaliana) MKK1 and MKK2 mitogen-activated protein kinase kinases have been implicated in biotic and abiotic stress responses as part of a signaling cascade including MEKK1 and MPK4. Here, the double loss-of-function mutant (mkk1/2) of MKK1 and MKK2 is shown to have marked phenotypes in development and disease resistance similar to those of the single mekk1 and mpk4 mutants. Because mkk1 or mkk2 single mutants appear wild type, basal levels of MPK4 activity are not impaired in them, and MKK1 and MKK2 are in part functionally redundant in unchallenged plants. These findings are confirmed and extended by biochemical and molecular analyses implicating the kinases in jasmonate- and salicylate-dependent defense responses, mediated in part via the MPK4 substrate MKS1. In addition, transcriptome analyses delineate overlapping and specific effects of the kinases on global gene expression patterns demonstrating both redundant and unique functions for MKK1 and MKK2.


Journal of Biological Chemistry | 2009

S-Nitrosylation of AtSABP3 Antagonizes the Expression of Plant Immunity

Yiqin Wang; Angela Feechan; Byung-Wook Yun; Reza Shafiei; Andreas Hofmann; Paul Taylor; Peng Xue; Fuquan Yang; Zhen-Sheng Xie; Jacqueline A. Pallas; Chengcai Chu; Gary J. Loake

Changes in cellular redox status are a well established response across phyla following pathogen challenge. In this context, the synthesis of nitric oxide (NO) is a conspicuous feature of plants responding to attempted microbial infection and this redox-based regulator underpins the development of plant immunity. However, the associated molecular mechanism(s) have not been defined. Here we show that NO accretion during the nitrosative burst promotes increasing S-nitrosylation of the Arabidopsis thaliana salicylic acid-binding protein 3 (AtSABP3) at cysteine (Cys) 280, suppressing both binding of the immune activator, salicylic acid (SA), and the carbonic anhydrase (CA) activity of this protein. The CA function of AtSABP3 is required for the expression of resistance in the host against attempted pathogen infection. Therefore, inhibition of AtSBAP3 CA function by S-nitrosylation could contribute to a negative feedback loop that modulates the plant defense response. Thus, AtSABP3 is one of the first targets for S-nitrosylation in plants for which the biological function of this redox-based post-translational modification has been uncovered. These data provide a molecular connection between the changes in NO levels triggered by attempted pathogen infection and the expression of disease resistance.


Physiologia Plantarum | 2010

The redox switch: dynamic regulation of protein function by cysteine modifications.

Davide Spadaro; Byung-Wook Yun; Steven H. Spoel; Chengcai Chu; Yiqin Wang; Gary J. Loake

Reactive oxygen intermediates (ROIs) and reactive nitrogen intermediates (RNIs) have now become well established as important signalling molecules in physiological settings within microorganisms, mammals and plants. These intermediates are routinely synthesised in a highly controlled and transient fashion by NADPH-dependent enzymes, which constitute key regulators of redox signalling. Mild oxidants such as hydrogen peroxide (H(2)O(2)) and especially nitric oxide (NO) signal through chemical reactions with specific atoms of target proteins that result in covalent protein modifications. Specifically, highly reactive cysteine (Cys) residues of low pK(a) are a major site of action for these intermediates. The oxidation of target Cys residues can result in a number of distinct redox-based, post-translational modifications including S-nitrosylation, S-glutathionylation; and sulphenic acid, sulphinic acid and disulphide formation. Importantly, such modifications precisely regulate protein structure and function. Cys-based redox switches are now increasingly being found to underpin many different signalling systems and regulate physiological outputs across kingdoms.


New Phytologist | 2008

Ultraviolet radiation drives methane emissions from terrestrial plant pectins

Andrew McLeod; Stephen C. Fry; Gary J. Loake; David J. Messenger; David S. Reay; K. A. Smith; Byung-Wook Yun

Recent studies demonstrating an in situ formation of methane (CH(4)) within foliage and separate observations that soil-derived CH(4) can be released from the stems of trees have continued the debate about the role of vegetation in CH(4) emissions to the atmosphere. Here, a study of the role of ultraviolet (UV) radiation in the formation of CH(4) and other trace gases from plant pectins in vitro and from leaves of tobacco (Nicotiana tabacum) in planta is reported. Plant pectins were investigated for CH(4 )production under UV irradiation before and after de-methylesterification and with and without the singlet oxygen scavenger 1,4-diazabicyclo[2.2.2]octane (DABCO). Leaves of tobacco were also investigated under UV irradiation and following leaf infiltration with the singlet oxygen generator rose bengal or the bacterial pathogen Pseudomonas syringae. Results demonstrated production of CH(4), ethane and ethylene from pectins and from tobacco leaves following all treatments, that methyl-ester groups of pectin are a source of CH(4), and that reactive oxygen species (ROS) arising from environmental stresses have a potential role in mechanisms of CH(4) formation. Rates of CH(4 )production were lower than those previously reported for intact plants in sunlight but the results clearly show that foliage can emit CH(4) under aerobic conditions.


Nature Biotechnology | 2010

Cultured cambial meristematic cells as a source of plant natural products

Eun-Kyong Lee; Young-Woo Jin; Joong Hyun Park; Young Mi Yoo; Sun Mi Hong; Rabia Amir; Zejun Yan; Eunjung Kwon; Alistair Elfick; Simon R. Tomlinson; Florian Halbritter; Thomas Waibel; Byung-Wook Yun; Gary J. Loake

A plethora of important, chemically diverse natural products are derived from plants. In principle, plant cell culture offers an attractive option for producing many of these compounds. However, it is often not commercially viable because of difficulties associated with culturing dedifferentiated plant cells (DDCs) on an industrial scale. To bypass the dedifferentiation step, we isolated and cultured innately undifferentiated cambial meristematic cells (CMCs). Using a combination of deep sequencing technologies, we identified marker genes and transcriptional programs consistent with a stem cell identity. This notion was further supported by the morphology of CMCs, their hypersensitivity to γ-irradiation and radiomimetic drugs and their ability to differentiate at high frequency. Suspension culture of CMCs derived from Taxus cuspidata, the source of the key anticancer drug, paclitaxel (Taxol), circumvented obstacles routinely associated with the commercial growth of DDCs. These cells may provide a cost-effective and environmentally friendly platform for sustainable production of a variety of important plant natural products.


Plant Science | 2011

GSNOR-mediated de-nitrosylation in the plant defence response

Saad I. Malik; Adil Hussain; Byung-Wook Yun; Steven H. Spoel; Gary J. Loake

A key feature of the plant defence response is the transient engagement of a nitrosative burst, resulting in the synthesis of reactive nitrogen intermediates (RNIs). Specific, highly reactive cysteine (Cys) residues of low pK(a) are a major site of action for these intermediates. The addition of an NO moiety to a Cys thiol to form an S-nitrosothiol (SNO), is termed S-nitrosylation. This redox-based post-translational modification is emerging as a key regulator of protein function in plant immunity. Here we highlight recent advances in our understanding of de-nitrosylation, the mechanism that depletes protein SNOs, with a focus on S-nitrosoglutathione reductase (GSNOR). This enzyme controls total cellular S-nitrosylation indirectly during the defence response by turning over S-nitrosoglutathione (GSNO), a major cache of NO bioactivity.


Journal of Biosciences | 2010

Proteome analysis of soybean roots under waterlogging stress at an early vegetative stage

Iftekhar Alam; Dong-Gi Lee; Kyung-Hee Kim; Choong-Hoon Park; Shamima Akhtar Sharmin; Hyoshin Lee; Ki-Won Oh; Byung-Wook Yun; Byung-Hyun Lee

To gain better insight into how soybean roots respond to waterlogging stress, we carried out proteomic profiling combined with physiological analysis at two time points for soybean seedlings in their early vegetative stage. Seedlings at the V2 stage were subjected to 3 and 7 days of waterlogging treatments. Waterlogging stress resulted in a gradual increase of lipid peroxidation and in vivo H2O2 level in roots. Total proteins were extracted from root samples and separated by two-dimensional gel electrophoresis (2-DE). A total of 24 reproducibly resolved, differentially expressed protein spots visualized by Coomassie brilliant blue (CBB) staining were identified by matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry or electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis. Of these, 14 proteins were upregulated; 5 proteins were decreased; and 5 were newly induced in waterlogged roots. The identified proteins include well-known classical anaerobically induced proteins as well as novel waterlogging-responsive proteins that were not known previously as being waterlogging responsive. The novel proteins are involved in several processes, i.e. signal transduction, programmed cell death, RNA processing, redox homeostasis and metabolisms of energy. An increase in abundance of several typical anaerobically induced proteins, such as glycolysis and fermentation pathway enzymes, suggests that plants meet energy requirement via the fermentation pathway due to lack of oxygen. Additionally, the impact of waterlogging on the several programmed cell death- and signal transduction-related proteins suggest that they have a role to play during stress. RNA gel blot analysis for three programmed cell death-related genes also revealed a differential mRNA level but did not correlate well with the protein level. These results demonstrate that the soybean plant can cope with waterlogging through the management of carbohydrate consumption and by regulating programmed cell death. The identification of novel proteins such as a translation initiation factor, apyrase, auxin-amidohydrolase and coproporphyrinogen oxidase in response to waterlogging stress may provide new insight into the molecular basis of the waterlogging-stress response of soybean.


Current Opinion in Plant Biology | 2012

A sleigh ride through the SNO: regulation of plant immune function by protein S-nitrosylation.

Manda Yu; Byung-Wook Yun; Steven H. Spoel; Gary J. Loake

S-nitrosylation, the covalent attachment of a nitric oxide (NO) moiety to a protein cysteine thiol to form an S-nitrosothiol (SNO) is rapidly emerging as a prototypic, redox-based post-translational modification during plant immune function. Here we review recently identified targets for S-nitrosylation and the consequences of these modifications in relation to the control of plant disease resistance.

Collaboration


Dive into the Byung-Wook Yun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eunjung Kwon

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adil Hussain

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar

Yiqin Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Angela Feechan

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bong-Gyu Mun

Kyungpook National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge