Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven Hagens is active.

Publication


Featured researches published by Steven Hagens.


Applied Microbiology and Biotechnology | 2007

Application of bacteriophages for detection and control of foodborne pathogens

Steven Hagens; Martin J. Loessner

The incidence of foodborne infectious diseases is stable or has even increased in many countries. Consequently, our awareness regarding hygiene measures in food production has also increased dramatically over the last decades. However, even today’s modern production techniques and intensive food-monitoring programs have not been able to effectively control the problem. At the same time, increased production volumes are distributed to more consumers, and if contaminated, potentially cause mass epidemics. Accordingly, research directed to improve food safety has also been taken forward, also exploring novel methods and technologies. Such an approach is represented by the use of bacteriophage for specific killing of unwanted bacteria. The extreme specificity of phages renders them ideal candidates for applications designed to increase food safety during the production process. Phages are the natural enemies of bacteria, and can be used for biocontrol of bacteria without interfering with the natural microflora or the cultures in fermented products. Moreover, phages or phage-derived proteins can also be used to detect the presence of unwanted pathogens in food or the production environments, which allows quick and specific identification of viable cells. This review intends to briefly summarize and explain the principles and current standing of these approaches.


Current Pharmaceutical Biotechnology | 2010

Bacteriophage for biocontrol of foodborne pathogens: calculations and considerations.

Steven Hagens; Martin J. Loessner

The use of phage or phage products in food production has recently become an option for the food industry as a novel method for biocontrol of unwanted pathogens, enhancing the safety of especially fresh and ready-to-eat food products. While it can be expected that many more phage products currently under development might become available in the future, several questions may be raised concerning the use of such products, regarding both immediate and long-term efficacy, consumer safety, and application methods. The available evidence suggests that, with a few caveats, safety concerns have been satisfactorily addressed. Answers concerning efficacy are more complex, depending on particular applications or the target pathogens. To ensure long-term efficacy beyond what can be tested on a laboratory scale, food safety concepts employing phages will have to be well-thought out and may involve rotation schemes as used with bacterial starter cultures, the use of phage cocktails, or application of phages combined with other antimicrobials. This review will discuss these issues on the basis of the available literature as well as providing an outlook on the potential of phages in future applications.


Microbial Biotechnology | 2008

PEGylation of bacteriophages increases blood circulation time and reduces T-helper type 1 immune response

Kwang-Pyo Kim; Jeong-Dan Cha; Eun-Hye Jang; Jochen Klumpp; Steven Hagens; Wolf-Dietrich Hardt; Kyung-Yeol Lee; Martin J. Loessner

The increasing occurrence of antibiotic‐resistant pathogens is of growing concern, and must be counteracted by alternative antimicrobial treatments. Bacteriophages represent the natural enemies of bacteria. However, the strong immune response following application of phages and rapid clearance from the blood stream are hurdles which need to be overcome. Towards our goal to render phages less immunogenic and prolong blood circulation time, we have chemically modified intact bacteriophages by conjugation of the non‐immunogenic polymer monomethoxy‐polyethylene glycol (mPEG) to virus proteins. As a proof of concept, we have used two different polyvalent and strictly virulent phages of the Myoviridae, representing typical candidates for therapeutical approaches: Felix‐O1 (infects Salmonella) and A511 (infects Listeria). Loss of phage infectivity after PEGylation was found to be proportional to the degree of modification, and could be conveniently controlled by adjusting the PEG concentration. When injected into naïve mice, PEGylated phages showed a strong increase in circulation half‐life, whereas challenge of immunized mice did not reveal a significant difference. Our results suggest that the prolonged half‐life is due to decreased susceptibility to innate immunity as well as avoidance of cellular defence mechanisms. PEGylated viruses elicited significantly reduced levels of T‐helper type 1‐associated cytokine release (IFN‐γ and IL‐6), in both naïve and immunized mice. This is the first study demonstrating that PEGylation can increases survival of infective phage by delaying immune responses, and indicates that this approach can increase efficacy of bacteriophage therapy.


Molecular Microbiology | 2013

Long tail fibres of the novel broad-host-range T-even bacteriophage S16 specifically recognize Salmonella OmpC

Roger Marti; Katrin Zurfluh; Steven Hagens; Jasmin Pianezzi; Jochen Klumpp; Martin J. Loessner

We report isolation and characterization of the novel T4‐like Salmonella bacteriophage vB_SenM‐S16. S16 features a T‐even morphology and a highly modified 160 kbp dsDNA genome with 36.9 mol % G+C, containing 269 putative coding sequences and three tRNA genes. S16 is a virulent phage, and exhibits a maximally broad host range within the genus Salmonella, but does not infect other bacteria. Synthesis of functional S16 full‐length long tail fibre (LTF) in Escherichia coli was possible by coexpression of gp37 and gp38. Surface plasmon resonance analysis revealed nanomolar equilibrium affinity of the LTF to its receptor on Salmonella cells. We show that OmpC serves as primary binding ligand, and that S16 adsorption can be transferred to E. coli by substitution of ompC with the Salmonella homologue. S16 also infects ‘rough’ Salmonella strains which are defective in lipopolysaccharide synthesis and/or its carbohydrate substitution, indicating that this interaction does not require an intact LPS structure. Altogether, its virulent nature, broad host range and apparent lack of host DNA transduction render S16 highly suitable for biocontrol of Salmonella in foods and animal production. The S16 LTF represents a highly specific affinity reagent useful for cell decoration and labelling, as well as bacterial immobilization and separation.


Bacteriophage | 2011

Reporter bacteriophage A511::celB transduces a hyperthermostable glycosidase from Pyrococcus furiosus for rapid and simple detection of viable Listeria cells

Steven Hagens; Tomas de Wouters; Philip Vollenweider; Martin J. Loessner

Reporter bacteriophages for detection of pathogenic bacteria offer fast and sensitive screening for live bacterial targets. We present a novel strategy employing a gene encoding a hyperthermophilic enzyme, permitting the use of various substrates and assay formats. The celB gene from the hyperthermophilic archaeon Pyrococcus furiosus specifying an extremely thermostable β-glycosidase was inserted into the genome of the broad host range, virulent Listeria phage A511 by homologous recombination. It is expressed at the end of the infectious cycle, under control of the strong major capsid gene promoter Pcps. Infection of Listeria with A511::celB results in strong gene expression and synthesis of a fully functional β-glycosidase. The reporter phage was tested for detection of viable Listeria cells with different chromogenic, fluorescent or chemiluminescent substrates. The best signal-to-noise ratio and sufficiently high sensitivity was obtained using the inexpensive substrate 4-Methylumbelliferyl-α-D-Glucopyranoside (MUG). The reporter phage assay is simple to perform and can be completed in about 6 h. Phage infection, as well as the subsequent temperature shift, enzymatic substrate conversion and signal recordings are independent from each other and may be performed separately. The detection limit for viable Listeria monocytogenes in an assay format adapted to 96-well microplates was 7.2 x 102 cells per well, corresponding to 6 x 103 cfu per ml in suspension. Application of the A511::celB protocol to Listeria in spiked chocolate milk and salmon demonstrate the usefulness of the reporter phage for rapid detection of low numbers of the bacteria (10 cfu/g or less) in contaminated foods.


Frontiers in Microbiology | 2014

Phages of Listeria offer novel tools for diagnostics and biocontrol

Steven Hagens; Martin J. Loessner

Historically, bacteriophages infecting their hosts have perhaps been best known and even notorious for being a nuisance in dairy-fermentation processes. However, with the rapid progress in molecular microbiology and microbial ecology, a new dawn has risen for phages. This review will provide an overview on possible uses and applications of Listeria phages, including phage-typing, reporter phage for bacterial diagnostics, and use of phage as biocontrol agents for food safety. The use of phage-encoded enzymes such as endolysins for the detection and as antimicrobial agent will also be addressed. Desirable properties of candidate phages for biocontrol will be discussed. While emphasizing the enormous future potential for applications, we will also consider some of the intrinsic limitations dictated by both phage and bacterial ecology.


Genome Announcements | 2013

Genome Sequence of Salmonella bongori Strain N268-08, a Rare Clinical Isolate

Roger Marti; Steven Hagens; Martin J. Loessner; Jochen Klumpp

ABSTRACT Salmonella bongori is a close relative of the highly virulent members of S. enterica subspecies enterica, encompassing more than 2,500 serovars, most of which cause human salmonellosis, one of the leading food-borne illnesses. S. bongori is only very rarely implicated in infections. We here present the sequence of a clinical isolate from Switzerland, S. bongori strain N268-08.


Handbook of Biosensors and Biochips | 2008

Luciferase Reporter Bacteriophages

Steven Hagens; Martin J. Loessner


Archive | 2013

A bacteriophage for biocontrol of salmonella and in the manufacturing or processing of foods

Martin J. Loessner; Steven Hagens; Albert Johannes Hendrikus Slijkhuis; Jochen Klumpp; Roger Marti


Archive | 2007

Bacteriophages of Listeria

Steven Hagens; Martin J. Loessner

Collaboration


Dive into the Steven Hagens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomas de Wouters

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eun-Hye Jang

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar

Jeong-Dan Cha

Chonbuk National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge