Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven Harper is active.

Publication


Featured researches published by Steven Harper.


Journal of Virology | 2003

Mechanism of Action and Antiviral Activity of Benzimidazole-Based Allosteric Inhibitors of the Hepatitis C Virus RNA-Dependent RNA Polymerase

Licia Tomei; Sergio Altamura; Linda Bartholomew; Antonino Biroccio; Alessandra Ceccacci; Laura Pacini; Frank Narjes; Nadia Gennari; Monica Bisbocci; Ilario Incitti; Laura Orsatti; Steven Harper; Ian Stansfield; Michael Rowley; Raffaele De Francesco; Giovanni Migliaccio

ABSTRACT The RNA-dependent RNA polymerase of hepatitis C virus (HCV) is the catalytic subunit of the viral RNA amplification machinery and is an appealing target for the development of new therapeutic agents against HCV infection. Nonnucleoside inhibitors based on a benzimidazole scaffold have been recently reported. Compounds of this class are efficient inhibitors of HCV RNA replication in cell culture, thus providing attractive candidates for further development. Here we report the detailed analysis of the mechanism of action of selected benzimidazole inhibitors. Kinetic data and binding experiments indicated that these compounds act as allosteric inhibitors that block the activity of the polymerase prior to the elongation step. Escape mutations that confer resistance to these compounds map to proline 495, a residue located on the surface of the polymerase thumb domain and away from the active site. Substitution of this residue is sufficient to make the HCV enzyme and replicons resistant to the inhibitors. Interestingly, proline 495 lies in a recently identified noncatalytic GTP-binding site, thus validating it as a potential allosteric site that can be targeted by small-molecule inhibitors of HCV polymerase.


Antimicrobial Agents and Chemotherapy | 2012

MK-5172, a Selective Inhibitor of Hepatitis C Virus NS3/4a Protease with Broad Activity across Genotypes and Resistant Variants

Vincenzo Summa; Steven W. Ludmerer; John A. McCauley; Christine Fandozzi; Christine Burlein; Giuliano Claudio; Paul J. Coleman; Jillian DiMuzio; Marco Ferrara; Marcello Di Filippo; Adam T. Gates; Donald J. Graham; Steven Harper; Daria J. Hazuda; Carolyn McHale; Edith Monteagudo; Vincenzo Pucci; Michael Rowley; Michael T. Rudd; Aileen Soriano; Mark W. Stahlhut; Joseph P. Vacca; David B. Olsen; Nigel Liverton; Steven S. Carroll

ABSTRACT HCV NS3/4a protease inhibitors are proven therapeutic agents against chronic hepatitis C virus infection, with boceprevir and telaprevir having recently received regulatory approval as add-on therapy to pegylated interferon/ribavirin for patients harboring genotype 1 infections. Overcoming antiviral resistance, broad genotype coverage, and a convenient dosing regimen are important attributes for future agents to be used in combinations without interferon. In this communication, we report the preclinical profile of MK-5172, a novel P2-P4 quinoxaline macrocyclic NS3/4a protease inhibitor currently in clinical development. The compound demonstrates subnanomolar activity against a broad enzyme panel encompassing major hepatitis C virus (HCV) genotypes as well as variants resistant to earlier protease inhibitors. In replicon selections, MK-5172 exerted high selective pressure, which yielded few resistant colonies. In both rat and dog, MK-5172 demonstrates good plasma and liver exposures, with 24-h liver levels suggestive of once-daily dosing. When administered to HCV-infected chimpanzees harboring chronic gt1a or gt1b infections, MK-5172 suppressed viral load between 4 to 5 logs at a dose of 1 mg/kg of body weight twice daily (b.i.d.) for 7 days. Based on its preclinical profile, MK-5172 is anticipated to be broadly active against multiple HCV genotypes and clinically important resistance variants and highly suited for incorporation into newer all-oral regimens.


Journal of Biological Chemistry | 2005

Interdomain Communication in Hepatitis C Virus Polymerase Abolished by Small-Molecule Inhibitors Bound to a Novel Allosteric Site

Stefania Di Marco; Cinzia Volpari; Licia Tomei; Sergio Altamura; Steven Harper; Frank Narjes; Uwe Koch; Michael Rowley; Raffaele De Francesco; Giovanni Migliaccio; Andrea Carfi

The hepatitis C virus (HCV) polymerase is required for replication of the viral genome and is a key target for therapeutic intervention against HCV. We have determined the crystal structures of the HCV polymerase complexed with two indole-based allosteric inhibitors at 2.3- and 2.4-Å resolution. The structures show that these inhibitors bind to a site on the surface of the thumb domain. A cyclohexyl and phenyl ring substituents, bridged by an indole moiety, fill two closely spaced pockets, whereas a carboxylate substituent forms a salt bridge with an exposed arginine side chain. Interestingly, in the apoenzyme, the inhibitor binding site is occupied by a small α-helix at the tip of the N-terminal loop that connects the fingers and thumb domains. Thus, these molecules inhibit the enzyme by preventing formation of intramolecular contacts between these two domains and consequently precluding their coordinated movements during RNA synthesis. Our structures identify a novel mechanism by which a new class of allosteric inhibitors inhibits the HCV polymerase and open the way to the development of novel antiviral agents against this clinically relevant human pathogen.


ACS Medicinal Chemistry Letters | 2012

Discovery of MK-5172, a Macrocyclic Hepatitis C Virus NS3/4a Protease Inhibitor.

Steven Harper; John A. McCauley; Michael T. Rudd; Marco Ferrara; Marcello DiFilippo; Benedetta Crescenzi; Uwe Koch; Alessia Petrocchi; M. Katharine Holloway; John W. Butcher; Joseph J. Romano; Kimberly J. Bush; Kevin F. Gilbert; Charles J. Mcintyre; Kevin Nguyen; Emanuela Nizi; Steven S. Carroll; Steven W. Ludmerer; Christine Burlein; Jillian DiMuzio; Donald J. Graham; Carolyn McHale; Mark Stahlhut; David B. Olsen; Edith Monteagudo; Simona Cianetti; Claudio Giuliano; Vincenzo Pucci; Nicole Trainor; Christine Fandozzi

A new class of HCV NS3/4a protease inhibitors containing a P2 to P4 macrocyclic constraint was designed using a molecular modeling-derived strategy. Building on the profile of previous clinical compounds and exploring the P2 and linker regions of the series allowed for optimization of broad genotype and mutant enzyme potency, cellular activity, and rat liver exposure following oral dosing. These studies led to the identification of clinical candidate 15 (MK-5172), which is active against genotype 1-3 NS3/4a and clinically relevant mutant enzymes and has good plasma exposure and excellent liver exposure in multiple species.


Journal of Medicinal Chemistry | 2005

Potent Inhibitors of Subgenomic Hepatitis C Virus RNA Replication through Optimization of Indole-N-Acetamide Allosteric Inhibitors of the Viral NS5B Polymerase

Steven Harper; Salvatore Avolio; Barbara Pacini; Marcello Di Filippo; Sergio Altamura; Licia Tomei; Giacomo Paonessa; Stefania Di Marco; Andrea Carfi; Claudio Giuliano; Julio Padron; Fabio Bonelli; Giovanni Migliaccio; Raffaele De Francesco; Ralph Laufer; and Michael Rowley; Frank Narjes

Infections caused by hepatitis C virus (HCV) are a significant world health problem for which novel therapies are in urgent demand. Compounds that block replication of subgenomic HCV RNA in liver cells are of interest because of their demonstrated antiviral effect in the clinic. In followup to our recent report that indole-N-acetamides (e.g., 1) are potent allosteric inhibitors of the HCV NS5B polymerase enzyme, we describe here their optimization as cell-based inhibitors. The crystal structure of 1 bound to NS5B was a guide in the design of a two-dimensional compound array that highlighted that formally zwitterionic inhibitors have strong intracellular potency and that pregnane X receptor (PXR) activation (an undesired off-target activity) is linked to a structural feature of the inhibitor. Optimized analogues devoid of PXR activation (e.g., 55, EC(50) = 127 nM) retain strong cell-based efficacy under high serum conditions and show acceptable pharmacokinetics parameters in rat and dog.


Xenobiotica | 2005

Preclinical pharmacokinetics and metabolism of a potent non-nucleoside inhibitor of the hepatitis C virus NS5B polymerase.

Claudio Giuliano; Fabrizio Fiore; A. Di Marco; J. Padron Velazquez; A. Bishop; Fabio Bonelli; Odalys Gonzalez-Paz; Isabella Marcucci; Steven Harper; Frank Narjes; Barbara Pacini; Edith Monteagudo; G. Migliaccio; Michael Rowley; Ralph Laufer

The disposition of compound A, a potent inhibitor of the hepatitis C virus (HCV) NS5B polymerase, was characterized in animals in support of its selection for further development. Compound A exhibited marked species differences in pharmacokinetics. Plasma clearance was 44 ml min−1 kg−1 in rats, 9 ml min−1 kg−1 in dogs and 16 ml min−1 kg−1 in rhesus monkeys. Oral bioavailability was low in rats (10%) but significantly higher in dogs (52%) and monkeys (26%). Compound A was eliminated primarily by metabolism in rats, with biliary excretion accounting for 30% of its clearance. Metabolism was mainly mediated by cyclohexyl hydroxylation, with N-deethylation and acyl glucuronide formation constituting minor metabolic pathways. Qualitatively, the same metabolites were identified using in vitro systems from all species studied, including humans. The low oral bioavailability of compound A in rats was mostly due to poor intestinal absorption. This conclusion was borne out by the findings that hepatic extraction in the rat was only 30%, intraperitoneal bioavailability was good, and compound A was poorly absorbed from the rat isolated intestinal loop, with no detectable intestinal metabolism. Compound A was not an inhibitor of major human cytochrome P450 enzymes, indicating minimal potential for clinical drug–drug interactions. The metabolic clearance of compound A in rat, dog and monkey hepatocytes correlated with the systemic clearance observed in these species. Since compound A was very stable in human hepatocytes, the results suggest that it will be a low clearance drug in humans.


Journal of Medicinal Chemistry | 2009

Inhibitors of the Hepatitis C Virus NS3 Protease with Basic Amine Functionality at the P3-Amino Acid N-Terminus: Discovery and Optimization of a New Series of P2−P4 Macrocycles

Steven Harper; Marco Ferrara; Benedetta Crescenzi; Marco Pompei; Maria Cecilia Palumbi; Jillian DiMuzio; Monica Donghi; Fabrizio Fiore; Uwe Koch; Nigel J. Liverton; Silvia Pesci; Alessia Petrocchi; Michael Rowley; Vincenzo Summa; Cristina Gardelli

In a follow-up to our recent disclosure of P2-P4 macrocyclic inhibitors of the hepatitis C virus (HCV) NS3 protease (e.g., 1, Chart 1), we report a new but related compound series featuring a basic amine at the N-terminus of the P3-amino acid residue. Replacement of the electroneutral P3-amino acid capping group (which is a feature of almost all tripeptide-like inhibitors of NS3 reported to date) with a basic group is not only tolerated but can result in advantageous cell based potency. Optimization of this new class of P3-amine based inhibitors gave compounds such as 25 and 26 that combine excellent cell based activity with pharmacokinetic properties that are attractive for an antiviral targeting HCV.


ChemMedChem | 2015

P2‐Quinazolinones and Bis‐Macrocycles as New Templates for Next‐Generation Hepatitis C Virus NS3/4a Protease Inhibitors: Discovery of MK‐2748 and MK‐6325

Michael T. Rudd; John W. Butcher; Kevin T. Nguyen; Charles J. McIntyre; Joseph J. Romano; Kevin F. Gilbert; Kimberly J. Bush; Nigel J. Liverton; M. Katharine Holloway; Steven Harper; Marco Ferrara; Marcello DiFilippo; Vincenzo Summa; John Swestock; Jeff Fritzen; Steven S. Carroll; Christine Burlein; Jillian M. DiMuzio; Adam T. Gates; Donald J. Graham; Qian Huang; Stephanie McClain; Carolyn McHale; Mark Stahlhut; Stuart Black; Robert Chase; Aileen Soriano; Christine Fandozzi; Anne Taylor; Nicole Trainor

With the goal of identifying inhibitors of hepatitis C virus (HCV) NS3/4a protease that are potent against a wide range of genotypes and clinically relevant mutant viruses, several subseries of macrocycles were investigated based on observations made during the discovery of MK‐5172. Quinazolinone‐containing macrocycles were identified as promising leads, and optimization for superior cross‐genotype and mutant enzyme potency as well as rat liver and plasma concentrations following oral dosing, led to the development of MK‐2748. Additional investigation of a series of bis‐macrocycles containing a fused 18‐ and 15‐membered ring system were also optimized for the same properties, leading to the discovery of MK‐6325. Both compounds display the broad genotype and mutant potency necessary for clinical development as next‐generation HCV NS3/4a protease inhibitors.


Xenobiotica | 2010

The metabolism and disposition of a potent inhibitor of hepatitis C virus NS3/4A protease

Edith Monteagudo; Massimiliano Fonsi; X. Chu; K. Bleasby; R. Evers; Vincenzo Pucci; Maria Vittoria Orsale; Simona Cianetti; Marco Ferrara; Steven Harper; Ralph Laufer; Michael Rowley; Vincenzo Summa

Compound A ((1aR,5S,8S,10R,22aR)-5-tert-butyl-N-{(1R,2S)-1-[(cyclopropylsulfonyl)carbamoyl]-2-ethenylcyclopropyl}-14-methoxy-3,6-dioxo-1,1a,3,4,5,6,9,10,18,19,20,21,22,22a-tetradecahydro-8H-7,10-methanocyclopropa[18,19][1,10,3,6]dioxadiazacyclononadecino[12,11-b]quinoline-8-carboxamide) is a prototype of a series of subnanomolar inhibitors of genotypes 1, 2, and 3 hepatitis C virus (HCV) NS3/4A proteases. HCV NS3/4A protease inhibitors have demonstrated high antiviral effects in patients with chronic HCV infection and are likely to form a key component of future HCV therapy. Compound A showed excellent liver exposure in rats, which is essential for compounds intended to treat HCV. The compound was mainly eliminated intact in bile and showed greater than dose proportional systemic exposure in rats. Compound A demonstrated time- and temperature-dependent uptake into rat and human hepatocytes and proved to be a substrate for rat hepatic uptake transporter Oatp1b2 and for human hepatic uptake transporters OATP1B1 and OATP1B3. The liver selectivity observed for this compound is likely to be due to transporter-mediated hepatic uptake together with moderate passive permeability. Metabolism was mainly CYP3A-mediated and generated a reactive epoxide on the vinylcyclopropyl sulfonamide moiety that could be quenched by glutathione. Similar metabolic profiles of Compound A were obtained in liver microsomes of rats and humans. The oral bioavailability at 5 mg/kg was low due to extensive hepatic first-pass effect but clearly the intestinal absorption was enough to deliver a high amount of the compound to the liver. The metabolism and disposition properties of Compound A are particularly attractive to support its evaluation as a drug candidate for the treatment of hepatitis C.


ACS Medicinal Chemistry Letters | 2016

Discovery of a Selective Series of Inhibitors of Plasmodium falciparum HDACs

Jesus M. Ontoria; Giacomo Paonessa; Simona Ponzi; Federica Ferrigno; Emanuela Nizi; Ilaria Biancofiore; Savina Malancona; Rita Graziani; David Roberts; Paul Willis; Alberto Bresciani; Nadia Gennari; Ottavia Cecchetti; Edith Monteagudo; Maria Vittoria Orsale; Maria Veneziano; Annalise Di Marco; Antonella Cellucci; Ralph Laufer; Sergio Altamura; Vincenzo Summa; Steven Harper

The identification of a new series of P. falciparum growth inhibitors is described. Starting from a series of known human class I HDAC inhibitors a SAR exploration based on growth inhibitory activity in parasite and human cells-based assays led to the identification of compounds with submicromolar inhibition of P. falciparum growth (EC50 < 500 nM) and good selectivity over the activity of human HDAC in cells (up to >50-fold). Inhibition of parasital HDACs as the mechanism of action of this new class of selective growth inhibitors is supported by hyperacetylation studies.

Collaboration


Dive into the Steven Harper's collaboration.

Top Co-Authors

Avatar

Vincenzo Summa

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Nigel J. Liverton

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. Mccauley

United States Military Academy

View shared research outputs
Researchain Logo
Decentralizing Knowledge