Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven J. Karpowicz is active.

Publication


Featured researches published by Steven J. Karpowicz.


Journal of Biological Chemistry | 2012

Three Acyltransferases and Nitrogen-responsive Regulator Are Implicated in Nitrogen Starvation-induced Triacylglycerol Accumulation in Chlamydomonas

Nanette R. Boyle; Mark Dudley Page; Bensheng Liu; Ian K. Blaby; David Casero; Janette Kropat; Shawn J. Cokus; Anne Hong-Hermesdorf; Johnathan Shaw; Steven J. Karpowicz; Sean D. Gallaher; Shannon L. Johnson; Christoph Benning; Matteo Pellegrini; Arthur R. Grossman; Sabeeha S. Merchant

Background: Nitrogen-starvation and other stresses induce triacylglycerol (TAG) accumulation in algae, but the relevant enzymes and corresponding signal transduction pathways are unknown. Results: RNA-Seq and genetic analysis revealed three acyltransferases that contribute to TAG accumulation. Conclusion: TAG synthesis results from recycling of membrane lipids and also by acylation of DAG. Significance: The genes are potential targets for manipulating TAG hyperaccumulation. Algae have recently gained attention as a potential source for biodiesel; however, much is still unknown about the biological triggers that cause the production of triacylglycerols. We used RNA-Seq as a tool for discovering genes responsible for triacylglycerol (TAG) production in Chlamydomonas and for the regulatory components that activate the pathway. Three genes encoding acyltransferases, DGAT1, DGTT1, and PDAT1, are induced by nitrogen starvation and are likely to have a role in TAG accumulation based on their patterns of expression. DGAT1 and DGTT1 also show increased mRNA abundance in other TAG-accumulating conditions (minus sulfur, minus phosphorus, minus zinc, and minus iron). Insertional mutants, pdat1-1 and pdat1-2, accumulate 25% less TAG compared with the parent strain, CC-4425, which demonstrates the relevance of the trans-acylation pathway in Chlamydomonas. The biochemical functions of DGTT1 and PDAT1 were validated by rescue of oleic acid sensitivity and restoration of TAG accumulation in a yeast strain lacking all acyltransferase activity. Time course analyses suggest than a SQUAMOSA promoter-binding protein domain transcription factor, whose mRNA increases precede that of lipid biosynthesis genes like DGAT1, is a candidate regulator of the nitrogen deficiency responses. An insertional mutant, nrr1-1, accumulates only 50% of the TAG compared with the parental strain in nitrogen-starvation conditions and is unaffected by other nutrient stresses, suggesting the specificity of this regulator for nitrogen-deprivation conditions.


The Plant Cell | 2011

Systems Biology Approach in Chlamydomonas Reveals Connections between Copper Nutrition and Multiple Metabolic Steps

Madeli Castruita; David Casero; Steven J. Karpowicz; Janette Kropat; Astrid Vieler; Scott I. Hsieh; Weihong Yan; Shawn J. Cokus; Joseph A. Loo; Christoph Benning; Matteo Pellegrini; Sabeeha S. Merchant

RNA-seq assessment of the transcriptome of autotrophic and heterotrophic Chlamydomonas as a function of copper nutrition reveals changes in redox metabolism regulated by CRR1, an SBP domain transcription factor. The changes in RNA abundance impact the abundance of specific plastid-localized proteins and the level of saturation of plastid galactolipids. In this work, we query the Chlamydomonas reinhardtii copper regulon at a whole-genome level. Our RNA-Seq data simulation and analysis pipeline validated a 2-fold cutoff and 10 RPKM (reads per kilobase of mappable length per million mapped reads) (~1 mRNA per cell) to reveal 63 CRR1 targets plus another 86 copper-responsive genes. Proteomic and immunoblot analyses captured 25% of the corresponding proteins, whose abundance was also dependent on copper nutrition, validating transcriptional regulation as a major control mechanism for copper signaling in Chlamydomonas. The impact of copper deficiency on the expression of several O2-dependent enzymes included steps in lipid modification pathways. Quantitative lipid profiles indicated increased polyunsaturation of fatty acids on thylakoid membrane digalactosyldiglycerides, indicating a global impact of copper deficiency on the photosynthetic apparatus. Discovery of a putative plastid copper chaperone and a membrane protease in the thylakoid suggest a mechanism for blocking copper utilization in the chloroplast. We also found an example of copper sparing in the N assimilation pathway: the replacement of copper amine oxidase by a flavin-dependent backup enzyme. Forty percent of the targets are previously uncharacterized proteins, indicating considerable potential for new discovery in the biology of copper.


The Plant Cell | 2012

Systems and Trans-System Level Analysis Identifies Conserved Iron Deficiency Responses in the Plant Lineage

Eugen I. Urzica; David Casero; Scott I. Hsieh; Lital N. Adler; Steven J. Karpowicz; Crysten E. Blaby-Haas; Steven Clarke; Joseph A. Loo; Matteo Pellegrini; Sabeeha S. Merchant

Transcriptomes of iron-limited versus -deficient Chlamydomonas reinhardtii cells under photoheterotrophic versus photoautotrophic conditions are described. Increased transcript abundance was positively correlated with protein abundance, except for iron-containing proteins where negative correlation was found. Some responses, including upregulation of MDAR1 and CGLD27/At5g67370, are conserved in land plants. We surveyed the iron nutrition-responsive transcriptome of Chlamydomonas reinhardtii using RNA-Seq methodology. Presumed primary targets were identified in comparisons between visually asymptomatic iron-deficient versus iron-replete cells. This includes the known components of high-affinity iron uptake as well as candidates for distributive iron transport in C. reinhardtii. Comparison of growth-inhibited iron-limited versus iron-replete cells revealed changes in the expression of genes in chloroplastic oxidative stress response pathways, among hundreds of other genes. The output from the transcriptome was validated at multiple levels: by quantitative RT-PCR for assessing the data analysis pipeline, by quantitative proteomics for assessing the impact of changes in RNA abundance on the proteome, and by cross-species comparison for identifying conserved or universal response pathways. In addition, we assessed the functional importance of three target genes, VITAMIN C 2 (VTC2), MONODEHYDROASCORBATE REDUCTASE 1 (MDAR1), and CONSERVED IN THE GREEN LINEAGE AND DIATOMS 27 (CGLD27), by biochemistry or reverse genetics. VTC2 and MDAR1, which are key enzymes in de novo ascorbate synthesis and ascorbate recycling, respectively, are likely responsible for the 10-fold increase in ascorbate content of iron-limited cells. CGLD27/At5g67370 is a highly conserved, presumed chloroplast-localized pioneer protein and is important for growth of Arabidopsis thaliana in low iron.


Journal of Biological Chemistry | 2011

The GreenCut2 Resource, a Phylogenomically Derived Inventory of Proteins Specific to the Plant Lineage

Steven J. Karpowicz; Simon Prochnik; Arthur R. Grossman; Sabeeha S. Merchant

The plastid is a defining structure of photosynthetic eukaryotes and houses many plant-specific processes, including the light reactions, carbon fixation, pigment synthesis, and other primary metabolic processes. Identifying proteins associated with catalytic, structural, and regulatory functions that are unique to plastid-containing organisms is necessary to fully define the scope of plant biochemistry. Here, we performed phylogenomics on 20 genomes to compile a new inventory of 597 nucleus-encoded proteins conserved in plants and green algae but not in non-photosynthetic organisms. 286 of these proteins are of known function, whereas 311 are not characterized. This inventory was validated as applicable and relevant to diverse photosynthetic eukaryotes using an additional eight genomes from distantly related plants (including Micromonas, Selaginella, and soybean). Manual curation of the known proteins in the inventory established its importance to plastid biochemistry. To predict functions for the 52% of proteins of unknown function, we used sequence motifs, subcellular localization, co-expression analysis, and RNA abundance data. We demonstrate that 18% of the proteins in the inventory have functions outside the plastid and/or beyond green tissues. Although 32% of proteins in the inventory have homologs in all cyanobacteria, unexpectedly, 30% are eukaryote-specific. Finally, 8% of the proteins of unknown function share no similarity to any characterized protein and are plant lineage-specific. We present this annotated inventory of 597 proteins as a resource for functional analyses of plant-specific biochemistry.


Photosynthesis Research | 2010

Phylogenomic analysis of the Chlamydomonas genome unmasks proteins potentially involved in photosynthetic function and regulation

Arthur R. Grossman; Steven J. Karpowicz; Mark Heinnickel; David Dewez; Blaise Hamel; Rachel M. Dent; Krishna K. Niyogi; Xenie Johnson; Jean Alric; Francis-André Wollman; Huiying Li; Sabeeha S. Merchant

Chlamydomonas reinhardtii, a unicellular green alga, has been exploited as a reference organism for identifying proteins and activities associated with the photosynthetic apparatus and the functioning of chloroplasts. Recently, the full genome sequence of Chlamydomonas was generated and a set of gene models, representing all genes on the genome, was developed. Using these gene models, and gene models developed for the genomes of other organisms, a phylogenomic, comparative analysis was performed to identify proteins encoded on the Chlamydomonas genome which were likely involved in chloroplast functions (or specifically associated with the green algal lineage); this set of proteins has been designated the GreenCut. Further analyses of those GreenCut proteins with uncharacterized functions and the generation of mutant strains aberrant for these proteins are beginning to unmask new layers of functionality/regulation that are integrated into the workings of the photosynthetic apparatus.


The Plant Cell | 2012

Fe Sparing and Fe Recycling Contribute to Increased Superoxide Dismutase Capacity in Iron-Starved Chlamydomonas reinhardtii

M. Dudley Page; Michael D. Allen; Janette Kropat; Eugen I. Urzica; Steven J. Karpowicz; Scott I. Hsieh; Joseph A. Loo; Sabeeha S. Merchant

Two pathways increase the capacity of the Chlamydomonas chloroplast to detoxify superoxide during Fe limitation stress. In one, a novel plastid-localized MnSOD is expressed in response to Fe limitation. In a second pathway, the plastid FeSOD is preferentially retained over other abundant Fe proteins, demonstrating prioritized allocation of Fe within the chloroplast. Fe deficiency is one of several abiotic stresses that impacts plant metabolism because of the loss of function of Fe-containing enzymes in chloroplasts and mitochondria, including cytochromes, FeS proteins, and Fe superoxide dismutase (FeSOD). Two pathways increase the capacity of the Chlamydomonas reinhardtii chloroplast to detoxify superoxide during Fe limitation stress. In one pathway, MSD3 is upregulated at the transcriptional level up to 103-fold in response to Fe limitation, leading to synthesis of a previously undiscovered plastid-specific MnSOD whose identity we validated immunochemically. In a second pathway, the plastid FeSOD is preferentially retained over other abundant Fe proteins, heme-containing cytochrome f, diiron magnesium protoporphyrin monomethyl ester cyclase, and Fe2S2-containing ferredoxin, demonstrating prioritized allocation of Fe within the chloroplast. Maintenance of FeSOD occurs, after an initial phase of degradation, by de novo resynthesis in the absence of extracellular Fe, suggesting the operation of salvage mechanisms for intracellular recycling and reallocation.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta)

Susan H. Brawley; Nicolas A. Blouin; Elizabeth Ficko-Blean; Glen L. Wheeler; Martin Lohr; Holly V. Goodson; Jerry Jenkins; Crysten E. Blaby-Haas; Katherine E. Helliwell; Cheong Xin Chan; Tara N. Marriage; Debashish Bhattacharya; Anita S. Klein; Yacine Badis; Juliet Brodie; Yuanyu Cao; Jonas Collén; Simon M. Dittami; Claire M. M. Gachon; Beverley R. Green; Steven J. Karpowicz; Jay W. Kim; Ulrich Johan Kudahl; Senjie Lin; Gurvan Michel; Maria Mittag; Bradley J. S. C. Olson; Jasmyn Pangilinan; Yi Peng; Huan Qiu

Significance Fossil evidence shows that red algae (Rhodophyta) are one of the most ancient multicellular lineages. Their ecological, evolutionary, and commercial importance notwithstanding, few red algal nuclear genomes have been sequenced. Our analyses of the Porphyra umbilicalis genome provide insights into how this macrophyte thrives in the stressful intertidal zone and into the basis for its nutritional value as human food. Many of the novel traits (e.g., cytoskeletal organization, calcium signaling pathways) we find encoded in the Porphyra genome are extended to other red algal genomes, and our unexpected findings offer a potential explanation for why the red algae are constrained to small stature relative to other multicellular lineages. Porphyra umbilicalis (laver) belongs to an ancient group of red algae (Bangiophyceae), is harvested for human food, and thrives in the harsh conditions of the upper intertidal zone. Here we present the 87.7-Mbp haploid Porphyra genome (65.8% G + C content, 13,125 gene loci) and elucidate traits that inform our understanding of the biology of red algae as one of the few multicellular eukaryotic lineages. Novel features of the Porphyra genome shared by other red algae relate to the cytoskeleton, calcium signaling, the cell cycle, and stress-tolerance mechanisms including photoprotection. Cytoskeletal motor proteins in Porphyra are restricted to a small set of kinesins that appear to be the only universal cytoskeletal motors within the red algae. Dynein motors are absent, and most red algae, including Porphyra, lack myosin. This surprisingly minimal cytoskeleton offers a potential explanation for why red algal cells and multicellular structures are more limited in size than in most multicellular lineages. Additional discoveries further relating to the stress tolerance of bangiophytes include ancestral enzymes for sulfation of the hydrophilic galactan-rich cell wall, evidence for mannan synthesis that originated before the divergence of green and red algae, and a high capacity for nutrient uptake. Our analyses provide a comprehensive understanding of the red algae, which are both commercially important and have played a major role in the evolution of other algal groups through secondary endosymbioses.


Free Radical Biology and Medicine | 2017

Reaction of hypotaurine or taurine with superoxide produces the organic peroxysulfonic acid peroxytaurine

Roxanna Q. Grove; Steven J. Karpowicz

Abstract Hypotaurine and taurine are amino acid derivatives and abundant molecules in many eukaryotes. The biological reaction in which hypotaurine is converted to taurine remains poorly understood. Here, hypotaurine and taurine were observed to react with superoxide anion in vitro to form the novel molecule peroxytaurine. In contrast, hypotaurine reacts with hydrogen peroxide to form taurine, but taurine does not react with hydrogen peroxide in vitro. Mass and NMR spectrometry as well as FTIR and Raman spectroscopy support the molecular characterization of peroxytaurine. Gravitometric and spectroscopy experiments suggest a stoichiometry of two superoxide anions reacting with one hypotaurine or two taurines. The newly identified molecule is a semi‐stable, organic peroxysulfonic acid that may be an intermediate metabolite in taurine synthesis. Graphical abstract Figure. No Caption available. HighlightsTaurine or hypotaurine react with superoxide forming 2‐aminoethaneperoxysulfonic acid.HPLC, ESI‐MS NMR, FTIR, and Raman support the characterization of peroxytaurine.Peroxytaurine degrades to taurine and hydrogen peroxide.


Archive | 2013

Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.) - eScholarship

Ray Ming; Robert VanBuren; Yanling Liu; Mei Yang; Yuepeng Han; Leiting Li; Qiong Zhang; Min-Jeong Kim; Michael C. Schatz; Michael S. Campbell; Jingping Li; John E. Bowers; Haibao Tang; Eric Lyons; Ann A. Ferguson; Giuseppe Narzisi; David R. Nelson; Crysten E. Blaby-Haas; Andrea R. Gschwend; Yuannian Jiao; Joshua P. Der; Fanchang Zeng; Jennifer Han; Xiang Min; Karen A. Hudson; Ratnesh Singh; Aleel K. Grennan; Steven J. Karpowicz; Jennifer R. Watling; Kikukatsu Ito

BackgroundSacred lotus is a basal eudicot with agricultural, medicinal, cultural and religious importance. It was domesticated in Asia about 7,000 years ago, and cultivated for its rhizomes and seeds as a food crop. It is particularly noted for its 1,300-year seed longevity and exceptional water repellency, known as the lotus effect. The latter property is due to the nanoscopic closely packed protuberances of its self-cleaning leaf surface, which have been adapted for the manufacture of a self-cleaning industrial paint, Lotusan.ResultsThe genome of the China Antique variety of the sacred lotus was sequenced with Illumina and 454 technologies, at respective depths of 101× and 5.2×. The final assembly has a contig N50 of 38.8 kbp and a scaffold N50 of 3.4 Mbp, and covers 86.5% of the estimated 929 Mbp total genome size. The genome notably lacks the paleo-triplication observed in other eudicots, but reveals a lineage-specific duplication. The genome has evidence of slow evolution, with a 30% slower nucleotide mutation rate than observed in grape. Comparisons of the available sequenced genomes suggest a minimum gene set for vascular plants of 4,223 genes. Strikingly, the sacred lotus has 16 COG2132 multi-copper oxidase family proteins with root-specific expression; these are involved in root meristem phosphate starvation, reflecting adaptation to limited nutrient availability in an aquatic environment.ConclusionsThe slow nucleotide substitution rate makes the sacred lotus a better resource than the current standard, grape, for reconstructing the pan-eudicot genome, and should therefore accelerate comparative analysis between eudicots and monocots.


Archive | 2013

Nelumbo nucifera [data set]

Ray Ming; Robert VanBuren; Yanling Liu; Mei Yang; Yuepeng Han; Leiting Li; Qiong Zhang; Min-Jeong Kim; Michael C. Schatz; Michael S. Campbell; Jingping Li; John E. Bowers; Haibao Tang; Eric Lyons; Ann A. Ferguson; Giuseppe Narzisi; David R. Nelson; Crysten E. Blaby-Haas; Andrea R. Gschwend; Yuannian Jiao; Joshua P. Der; Fanchang Zeng; Jennifer Han; Jia Min Xiang; Karen A. Hudson; Ratnesh Singh; Aleel K. Grennan; Steven J. Karpowicz; Jennifer R. Watling; Kikukatsu Ito

BackgroundSacred lotus is a basal eudicot with agricultural, medicinal, cultural and religious importance. It was domesticated in Asia about 7,000 years ago, and cultivated for its rhizomes and seeds as a food crop. It is particularly noted for its 1,300-year seed longevity and exceptional water repellency, known as the lotus effect. The latter property is due to the nanoscopic closely packed protuberances of its self-cleaning leaf surface, which have been adapted for the manufacture of a self-cleaning industrial paint, Lotusan.ResultsThe genome of the China Antique variety of the sacred lotus was sequenced with Illumina and 454 technologies, at respective depths of 101× and 5.2×. The final assembly has a contig N50 of 38.8 kbp and a scaffold N50 of 3.4 Mbp, and covers 86.5% of the estimated 929 Mbp total genome size. The genome notably lacks the paleo-triplication observed in other eudicots, but reveals a lineage-specific duplication. The genome has evidence of slow evolution, with a 30% slower nucleotide mutation rate than observed in grape. Comparisons of the available sequenced genomes suggest a minimum gene set for vascular plants of 4,223 genes. Strikingly, the sacred lotus has 16 COG2132 multi-copper oxidase family proteins with root-specific expression; these are involved in root meristem phosphate starvation, reflecting adaptation to limited nutrient availability in an aquatic environment.ConclusionsThe slow nucleotide substitution rate makes the sacred lotus a better resource than the current standard, grape, for reconstructing the pan-eudicot genome, and should therefore accelerate comparative analysis between eudicots and monocots.

Collaboration


Dive into the Steven J. Karpowicz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arthur R. Grossman

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Casero

University of California

View shared research outputs
Top Co-Authors

Avatar

Janette Kropat

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann A. Ferguson

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge