Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven J. Steinberg is active.

Publication


Featured researches published by Steven J. Steinberg.


Journal of Biological Chemistry | 1998

Disruption of the Saccharomyces cerevisiae FAT1 gene decreases very long-chain fatty acyl-CoA synthetase activity and elevates intracellular very long-chain fatty acid concentrations.

Paul A. Watkins; Jyh Feng Lu; Steven J. Steinberg; Stephen J. Gould; Kirby D. Smith; Lelita T. Braiterman

Activation of fatty acids to their coenzyme A derivatives is necessary for subsequent metabolism. Very long-chain fatty acids, which accumulate in tissues of patients with X-linked adrenoleukodystrophy, are activated by very long-chain acyl-CoA synthetase (VLCS) normally found in peroxisomes and microsomes. We identified a candidate yeast VLCS gene (FAT1), previously identified as encoding afatty acid transport protein, by its homology to rat liver peroxisomal VLCS. Disruption of this gene decreased, but did not abolish, cellular VLCS activity. Fractionation studies showed that VLCS activity, but not long-chain acyl-CoA synthetase activity, was reduced to about 40% of wild-type level in both 27,000 × g supernatant and pellet fractions. Separation of organelles in the pellet fraction by density gradient centrifugation revealed that VLCS activity was associated with peroxisomes and microsomes but not mitochondria. FAT1deletion strains exhibited decreased growth on medium containing dextrose, oleic acid, and cerulenin, an inhibitor of fatty acid synthesis. FAT1 deletion strains grown on either dextrose or oleic acid medium accumulated very long-chain fatty acids. Compared with wild-type yeast, C22:0, C24:0, and C26:0 levels were increased approximately 20-, 18-, and 3-fold in deletion strains grown on dextrose, and 2-, 7-, and 5-fold in deletion strains grown on oleate. Long-chain fatty acid levels in wild-type and deletion strains were not significantly different. All biochemical defects in FAT1deletion strains were restored to normal after functional complementation with the FAT1 gene. The level of VLCS activity measured in both wild-type and deletion yeast strains transformed with FAT1 cDNA paralleled the level of expression of the transgene. The extent of both the decrease in peroxisomal VLCS activity and the very long-chain fatty acid accumulation in the yeast FAT1 deletion model resembles that observed in cells from X-linked adrenoleukodystrophy patients. These studies suggest that the FAT1 gene product has VLCS activity that is essential for normal cellular very long-chain fatty acid homeostasis.


Molecular Genetics and Metabolism | 2009

Newborn screening for X-linked adrenoleukodystrophy (X-ALD): Validation of a combined liquid chromatography–tandem mass spectrometric (LC–MS/MS) method

Walter C. Hubbard; Ann B. Moser; Anita C. Liu; Richard O. Jones; Steven J. Steinberg; Fred Lorey; Susan R. Panny; Robert F. Vogt; Daniela Macaya; Coleman T. Turgeon; Silvia Tortorelli; Gerald V. Raymond

Newborn screening for X-linked adrenoleukodystrophy (X-ALD) has until now been limited in implementation because of the lack of an accepted standard methodology. We have previously reported a technique using LC-MS/MS analysis that could provide the basis for screening of newborns for X-ALD. The target analyte diagnostic for X-ALD and other peroxisomal disorders of peroxisomal beta-oxidation is 1-hexacosanoyl-2-lyso-sn-3-glycero-phosphorylcholine (26:0-lyso-PC). We report here the validation of the analytical method using an authentic standard of the target compound. The method possesses sensitivity of <1.0fmole injected on column with a correlation coefficient (R(2)) of 0.9987. A tetradeuterated analog of 26:0-lyso-PC served as the internal standard. The sensitivity of this clinical method was confirmed using 17 newborn samples of individuals with peroxisomal disorders retrieved from state newborn screening programs. These samples were run masked with over 1000 newborn samples. All affected individuals were identified with one exception. One sample which was retrieved as an affected did not have the biochemical or genetic abnormality of X-ALD and thus is considered an error in sample identity. These studies clearly show that the method is highly sensitive and accurate in identifying individuals with a defect in peroxisomal beta-oxidation such as X-ALD.


Journal of Biological Chemistry | 2000

Very long-chain acyl-CoA synthetases. Human "bubblegum" represents a new family of proteins capable of activating very long-chain fatty acids.

Steven J. Steinberg; Janine Morgenthaler; Ann K. Heinzer; Kirby D. Smith; Paul A. Watkins

Activation by thioesterification to coenzyme A is a prerequisite for most reactions involving fatty acids. Enzymes catalyzing activation, acyl-CoA synthetases, have been classified by their chain length specificities. The most recently identified family is the very long-chain acyl-CoA synthetases (VLCS). Although several members of this group are capable of activating very long-chain fatty acids (VLCFA), one is a bile acid-CoA synthetase, and others have been characterized as fatty acid transport proteins. It was reported that the Drosophila melanogaster mutantbubblegum (BGM) had elevated VLCFA and that the product of the defective gene had sequence homology to acyl-CoA synthetases. Therefore, we cloned full-length cDNA for a human homolog of BGM, and we investigated the properties of its protein product, hsBG, to determine whether it had VLCS activity. Northern blot analysis showed that hsBG is expressed primarily in brain. Compared with vector-transfected cells, COS-1 cells expressing hsBG had increased acyl-CoA synthetase activity with either long-chain fatty acid (2.4-fold) or VLCFA (2.6-fold) substrates. Despite this increased VLCFA activation, hsBG-expressing cells did not have increased rates of VLCFA degradation. Confocal microscopy showed that hsBG had a cytoplasmic localization in some COS-1 cells expressing the protein, whereas it appeared to associate with plasma membrane in others. Fractionation of these cells revealed that most of the hsBG-dependent acyl-CoA synthetase activity was soluble and not membrane-bound. Immunoaffinity-purified hsBG from transfected COS-1 cells was enzymatically active. hsBG and hsVLCS are only 15% identical, and comparison with sequences of two conserved motifs from all known families of acyl-CoA synthetases revealed that hsBG along with the D. melanogaster and murine homologs comprise a new family of acyl-CoA synthetases. Thus, two protein families are now known that contain enzymes capable of activating VLCFA. Because hsBG is expressed in brain but previously described VLCSs were not highly expressed in this organ, hsBG may play a central role in brain VLCFA metabolism and myelinogenesis.


Journal of Biological Chemistry | 2000

The Human Liver-specific Homolog of Very Long-chain Acyl-CoA Synthetase Is Cholate:CoA Ligase

Steven J. Steinberg; Stephanie J. Mihalik; Do G. Kim; Dean Cuebas; Paul A. Watkins

Unconjugated bile acids must be activated to their CoA thioesters before conjugation to taurine or glycine can occur. A human homolog of very long-chain acyl-CoA synthetase, hVLCS-H2, has two requisite properties of a bile acid:CoA ligase, liver specificity and an endoplasmic reticulum subcellular localization. We investigated the ability of this enzyme to activate the primary bile acid, cholic acid, to its CoA derivative. When expressed in COS-1 cells, hVLCS-H2 exhibited cholate:CoA ligase (choloyl-CoA synthetase) activity with both non-isotopic and radioactive assays. Other long- and very long-chain acyl-CoA synthetases were incapable of activating cholate. Endogenous choloyl-CoA synthetase activity was also detected in liver-derived HepG2 cells but not in kidney-derived COS-1 cells. Our results are consistent with a role for hVLCS-H2 in the re-activation and re-conjugation of bile acids entering liver from the enterohepatic circulation rather than in de novo bile acid synthesis.


Journal of Immunology | 2006

Bap31 Enhances the Endoplasmic Reticulum Export and Quality Control of Human Class I MHC Molecules

John J. Ladasky; Sarah Boyle; Malini Seth; Hewang Li; Tsvetelina Pentcheva; Fumiyoshi Abe; Steven J. Steinberg; Michael Edidin

The assembly of class I MHC molecules and their export from the endoplasmic reticulum (ER) is governed by chaperones and accessory proteins. We present evidence that the putative cargo receptor protein Bap31 participates in the transport and the quality control of human class I molecules. Transfection of the human adenocarcinoma cell line HeLa with yellow fluorescent protein-Bap31 chimeras increased surface levels of class I in a dose-dependent manner, by as much as 3.7-fold. The increase in surface class I resulted from an increase in the rate of export of newly synthesized class I molecules to the cell surface and from an increase in the stability of the exported molecules. We propose that Bap31 performs quality control on class I molecules in two distinct phases: first, by exporting peptide-loaded class I molecules to the ER/Golgi intermediate compartment, and second, by retrieving class I molecules that have lost peptides in the acidic post-ER environment. This function of Bap31 is conditional or redundant, because we find that Bap31 deficiency does not reduce surface class I levels. Overexpression of the Bap31 homolog, Bap29, decreases surface class levels in HeLa, indicating that it does not substitute for Bap31.


Journal of Cellular Biochemistry | 2011

Nonsense suppressor therapies rescue peroxisome lipid metabolism and assembly in cells from patients with specific PEX gene mutations

Patricia K. Dranchak; Erminia Di Pietro; Ann Snowden; Nathan Oesch; Nancy Braverman; Steven J. Steinberg; Joseph G. Hacia

Peroxisome biogenesis disorders (PBDs) are multisystemic autosomal recessive disorders resulting from mutations in PEX genes required for normal peroxisome assembly and metabolic activities. Here, we evaluated the potential effectiveness of aminoglycoside G418 (geneticin) and PTC124 (ataluren) nonsense suppression therapies for the treatment of PBD patients with disease‐causing nonsense mutations. PBD patient skin fibroblasts producing stable PEX2 or PEX12 nonsense transcripts and Chinese hamster ovary (CHO) cells with a Pex2 nonsense allele all showed dramatic improvements in peroxisomal very long chain fatty acid catabolism and plasmalogen biosynthesis in response to G418 treatments. Cell imaging assays provided complementary confirmatory evidence of improved peroxisome assembly in G418‐treated patient fibroblasts. In contrast, we observed no appreciable rescue of peroxisome lipid metabolism or assembly for any patient fibroblast or CHO cell culture treated with various doses of PTC124. Additionally, PTC124 did not show measurable nonsense suppression in immunoblot assays that directly evaluated the read‐through of PEX7 nonsense alleles found in PBD patients with rhizomelic chondrodysplasia punctata type 1 (RCDP1). Overall, our results support the continued development of safe and effective nonsense suppressor therapies that could benefit a significant subset of individuals with PBDs. Furthermore, we suggest that the described cell culture assay systems could be useful for evaluating and screening for novel nonsense suppressor therapies. J. Cell. Biochem. 112: 1250–1258, 2011.


Molecular Genetics and Metabolism | 2016

Peroxisome biogenesis disorders in the Zellweger spectrum: An overview of current diagnosis, clinical manifestations, and treatment guidelines

Nancy E Braverman; Gerald V. Raymond; William B. Rizzo; Ann B. Moser; Mark E. Wilkinson; Edwin M. Stone; Steven J. Steinberg; Michael F. Wangler; Eric T. Rush; Joseph G. Hacia; Mousumi Bose

Peroxisome biogenesis disorders in the Zellweger spectrum (PBD-ZSD) are a heterogeneous group of genetic disorders caused by mutations in PEX genes responsible for normal peroxisome assembly and functions. As a result of impaired peroxisomal activities, individuals with PBD-ZSD can manifest a complex spectrum of clinical phenotypes that typically result in shortened life spans. The extreme variability in disease manifestation ranging from onset of profound neurologic symptoms in newborns to progressive degenerative disease in adults presents practical challenges in disease diagnosis and medical management. Recent advances in biochemical methods for newborn screening and genetic testing have provided unprecedented opportunities for identifying patients at the earliest possible time and defining the molecular bases for their diseases. Here, we provide an overview of current clinical approaches for the diagnosis of PBD-ZSD and provide broad guidelines for the treatment of disease in its wide variety of forms. Although we anticipate future progress in the development of more effective targeted interventions, the current guidelines are meant to provide a starting point for the management of these complex conditions in the context of personalized health care.


Molecular Genetics and Metabolism | 2010

A Pex7 hypomorphic mouse model for plasmalogen deficiency affecting the lens and skeleton.

Nancy Braverman; Rui Zhang; Li Chen; Graeme Nimmo; Sarah Scheper; Tammy Tran; Rupsa Chaudhury; Ann B. Moser; Steven J. Steinberg

Rhizomelic chondrodysplasia punctata type 1 is a peroxisome biogenesis disorder with the clinical features of rhizomelia, abnormal epiphyseal calcifications, congenital cataracts, and profound growth and developmental delays. It is a rare autosomal recessive disorder, caused by defects in the peroxisome receptor, PEX7. The pathology results from a deficiency of plasmalogens, a critical class of ether phospholipids whose functions are largely unknown. To study plasmalogens in an animal model, avoid early mortality and facilitate therapeutic investigations in this disease, we engineered a hypomorphic mouse model in which Pex7 transcript levels are reduced to less than 5% of wild type. These mice are born in expected ratios, are fertile and have a normal life span. However, they are petite and develop early cataracts. Further investigations showed delayed endochondral ossification and abnormalities in lens fibers. The biochemical features of reduced Pex7 function were reproduced in this model, including tissue plasmalogen deficiency, phytanic acid accumulation, reduced import of Pex7 ligands and consequent defects in plasmalogen biosynthesis and phytanic acid oxidation. Dietary supplementation with batyl alcohol, a plasmalogen precursor, recovered ether phospholipids in blood, but did not alter the clinical phenotype. The relatively mild phenotype of these mice mimics patients with milder PEX7 defects, and highlights the skeleton and lens as sensitive markers of plasmalogen deficiency. The role of plasmalogens in the normal function of these tissues at various ages can now be studied and additional therapeutic interventions tested in this model.


Annals of Neurology | 1999

Role of very-long-chain acyl-coenzyme A synthetase in X-linked adrenoleukodystrophy

Steven J. Steinberg; Stephan Kemp; Lelita T. Braiterman; Paul A. Watkins

X‐linked adrenoleukodystrophy (X‐ALD) is characterized biochemically by decreased ability of cells to activate (via very‐long‐chain acyl–coenzyme A synthetase [VLCS]) and subsequently degrade very‐long‐chain fatty acids in peroxisomes. It is noteworthy that the gene defective in X‐ALD encodes ALDP, a peroxisomal membrane protein unrelated to VLCS. We cloned human VLCS (hVLCS) and found that peroxisomes from X‐ALD fibroblasts contained immunoreactive hVLCS, refuting the earlier hypothesis that ALDP is required to anchor VLCS to the peroxisomal membrane. Furthermore, hVLCS was topographically oriented facing the peroxisomal matrix in both control and X‐ALD fibroblasts, contradicting the alternative hypothesis that ALDP is required to translocate VLCS into peroxisomes. However, overexpression of both hVLCS and ALDP in X‐ALD fibroblasts synergistically increased very‐long‐chain fatty acid β‐oxidation, indicating that these proteins interact functionally.


Human Mutation | 2009

Identification of Novel Mutations and Sequence Variation in the Zellweger Syndrome Spectrum of Peroxisome Biogenesis Disorders

Wing Yan Yik; Steven J. Steinberg; Ann B. Moser; Hugo W. Moser; Joseph G. Hacia

Peroxisome biogenesis disorders (PBD) are a heterogeneous group of autosomal recessive neurodegenerative disorders that affect multiple organ systems. Approximately 80% of PBD patients are classified in the Zellweger syndrome spectrum (PBD‐ZSS). Mutations in the PEX1, PEX6, PEX10, PEX12, or PEX26 genes are found in approximately 90% of PBD‐ZSS patients. Here, we sequenced the coding regions and splice junctions of these five genes in 58 PBD‐ZSS cases previously subjected to targeted sequencing of a limited number of PEX gene exons. In our cohort, 71 unique sequence variants were identified, including 18 novel mutations predicted to disrupt protein function and 2 novel silent variants. We identified 4 patients who had two deleterious mutations in one PEX gene and a third deleterious mutation in a second PEX gene. For two such patients, we conducted cell fusion complementation analyses to identify the defective gene responsible for aberrant peroxisome assembly. Overall, we provide empirical data to estimate the relative fraction of disease‐causing alleles that occur in the coding and splice junction sequences of these five PEX genes and the frequency of cases where mutations occur in multiple PEX genes. This information is beneficial for efforts aimed at establishing rapid and sensitive clinical diagnostics for PBD‐ZSS patients and interpreting the results from these genetic tests.

Collaboration


Dive into the Steven J. Steinberg's collaboration.

Top Co-Authors

Avatar

Ann B. Moser

Kennedy Krieger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph G. Hacia

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Hugo W. Moser

Kennedy Krieger Institute

View shared research outputs
Top Co-Authors

Avatar

Nancy Braverman

Montreal Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Kirby D. Smith

Kennedy Krieger Institute

View shared research outputs
Top Co-Authors

Avatar

Ann Snowden

Kennedy Krieger Institute

View shared research outputs
Top Co-Authors

Avatar

Garry R. Cutting

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge