Steven M. Colegate
Agricultural Research Service
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steven M. Colegate.
Journal of Agricultural and Food Chemistry | 2008
Michael Boppré; Steven M. Colegate; John A. Edgar; Ottmar W. Fischer
Using HPLC-ESI-MS, several saturated and 1,2-dehydropyrrolizidine alkaloids were detected, mainly as their N-oxides, in fresh pollen collected from flowers of the pyrrolizidine alkaloid-producing plants Echium vulgare, E. plantagineum, Senecio jacobaea, S. ovatus, and Eupatorium cannabinum, and/or pollen loads from bees (bee pollen) that foraged on those plants. A major alkaloidal metabolite in S. ovatus was tentatively identified, using its mass spectrometric data and biogenic considerations, as the previously unreported, saturated alkaloid, 2-hydroxysarracine. Heating had very little effect on the 1,2-dehydropyrrolizidine alkaloids and their N-oxides from a variety of sources. Considered in conjunction with international concerns about the adverse effects of these alkaloids, the results strongly indicate a need for monitoring pollen supplies intended for human consumption, at least until conditions for processing and/or selection are clearly defined such as to significantly reduce the hepatotoxic (and potentially carcinogenic and genotoxic) pyrrolizidine alkaloid content of bee pollen.
Journal of Agricultural and Food Chemistry | 2010
Stephen T. Lee; T. Zane Davis; Dale R. Gardner; Steven M. Colegate; Daniel Cook; Benedict T. Green; Kimberly A. Meyerholtz; Christina R. Wilson; Bryan L. Stegelmeier; Tim J. Evans
Ingestion of white snakeroot ( Ageratina altissima ) can cause trembles in livestock and milk sickness in humans. The toxicity has been associated with tremetol, a relatively crude, multicomponent lipophilic extract of the plant. In this study, 11 different compounds were isolated from white snakeroot-derived lipophilic extracts from 18 collections. Six of the isolated compounds have not been previously reported to be found in white snakeroot. High-performance liquid chromatography (HPLC) analysis indicated that there are three different chemotypes of white snakeroot from the plant samples analyzed. Elucidation of these chemotypes may explain the sporadic and unpredictable toxicity of white snakeroot to livestock and humans.
Journal of Agricultural and Food Chemistry | 2014
Stephen T. Lee; Daniel Cook; James A. Pfister; Jeremy G. Allen; Steven M. Colegate; Franklin Riet-Correa; Charlotte M. Taylor
Many plants worldwide contain monofluoroacetate and cause sudden death in livestock. These plants are primarily found in the southern continents of Africa, Australia, and South America, where they negatively affect livestock production. This review highlights past and current research investigating (1) the plants reported to contain monofluoroacetate and cause sudden death; (2) the mode of action, clinical signs, and pathology associated with poisoning by monofluoroacetate-containing plants; (3) chemical methods for the analysis of monofluoroacetate in plants; (4) the coevolution of native flora and fauna in Western Australia with respect to monofluoroacetate-containing plants; and (5) methods to mitigate livestock losses caused by monofluoroacetate-containing plants.
Phytochemical Analysis | 2013
Steven M. Colegate; Dale R. Gardner; T. Zane Davis; Joseph M. Betz; Kip E. Panter
INTRODUCTION A livestock poisoning outbreak near Kingman, Arizona, USA, potentially linked to dehydropyrrolizidine alkaloids, prompted an evaluation of some local plants for the presence of these hepatotoxic alkaloids. OBJECTIVE To qualitatively and quantitatively examine two species of Cryptantha, a Boraginaceous genus previously shown to produce potentially toxic pyrrolizidine alkaloids, collected from the vicinity of Kingman, Arizona. METHOD Plant extracts were analysed using HPLC-electrospray ionisation (+)-MS and MS/MS to determine the presence of dehydropyrrolizidine alkaloid esters. Identities were confirmed by comparison of chromatographic and MS data with authenticated standards and, in the case of the previously undescribed alkaloids, using one- and two-dimensional NMR spectroscopy and high-resolution mass measurement. RESULTS Cryptantha inequata and C. utahensis were shown to produce retronecine-based dehydropyrrolizidine alkaloids at approximately 0.05% and 0.09% w/w respectively. Cryptantha inequata produced mainly echimidine, acetylechimidine and echiuplatine; dehydropyrrolizidine alkaloids that were previously associated with Echium plantagineum. The previously undescribed structure of echiuplatine was elucidated as an amphoteric, open chain diester with angelic acid and 3-hydroxy-3-methylglutaric acid. Along with lycopsamine, intermedine and dihydroxyechiumine, C. utahensis produced cryptanthine, a previously undescribed open chain diester alkaloid esterified with angelic acid and 2,3-dihydroxy-2-methylbutanoic acid. All pyrrolizidine alkaloids detected were present in the plants mainly as their N-oxides. CONCLUSION The retronecine-based alkaloids detected in both Cryptantha species herein investigated aligns them within the Krynitzkia subgenus. The dehydropyrrolizidine alkaloids detected are expected to be toxic but the low levels in the plants potentially mitigate the risk. The identification of the amphoteric echiuplatine provides a cautionary note with respect to the analysis of total dehydropyrrolizidine alkaloid content.
Phytochemical Analysis | 2015
Michael Boppré; Steven M. Colegate
INTRODUCTION The freshwater aquatic plant Gymnocoronis spilanthoides (Senegal tea plant, jazmín del bañado, Falscher Wasserfreund) is an invasive plant in many countries. Behavioural observations of pyrrolizidine alkaloid-pharmacophagous butterflies suggested the presence of pyrrolizidine alkaloids in the plant. OBJECTIVE To determine whether the attraction of the butterflies to the plant is an accurate indicator of pyrrolizidine alkaloids in G. spilanthoides. METHODS The alkaloid fraction of a methanolic extract of G. spilanthoides was analysed using HPLC with electrospray ionisation MS and MS/MS. Two HPLC approaches were used, that is, a C18 reversed-phase column with an acidic mobile phase, and a porous graphitic carbon column with a basic mobile phase. RESULTS Pyrrolizidine alkaloids were confirmed, with the free base forms more prevalent than the N-oxides. The major alkaloids detected were lycopsamine and intermedine. The porous graphitic carbon HPLC column, with basic mobile phase conditions, resulted in better resolution of more pyrrolizidine alkaloids including rinderine, the heliotridine-based epimer of intermedine. Based on the MS/MS and high-resolution MS data, gymnocoronine was tentatively identified as an unusual C9 retronecine ester with 2,3-dihydroxy-2-propenylbutanoic acid. Among several minor-abundance monoester pyrrolizidines recognised, spilanthine was tentatively identified as an ester of isoretronecanol with the unusual 2-acetoxymethylbutanoic acid. CONCLUSIONS The butterflies proved to be reliable indicators for the presence of pro-toxic 1,2-dehydropyrrolizidine alkaloids in G. spilanthoides, the first aquatic plant shown to produce these alkaloids. The presence of the anti-herbivory alkaloids may contribute to the plants invasive capabilities and would certainly be a consideration in any risk assessment of deliberate utilisation of the plant. The prolific growth of the plant and the structural diversity of its pyrrolizidine alkaloids may make it ideal for investigating biosynthetic pathways or for large-scale production of specific alkaloids.
Toxins | 2016
Bryan L. Stegelmeier; Steven M. Colegate; Ammon W. Brown
Dehydropyrrolizidine alkaloid (DHPA)-producing plants have a worldwide distribution amongst flowering plants and commonly cause poisoning of livestock, wildlife, and humans. Previous work has produced considerable understanding of DHPA metabolism, toxicity, species susceptibility, conditions, and routes of exposure, and pathogenesis of acute poisoning. Intoxication is generally caused by contaminated grains, feed, flour, and breads that result in acute, high-dose, short-duration poisoning. Acute poisoning produces hepatic necrosis that is usually confirmed histologically, epidemiologically, and chemically. Less is known about chronic poisoning that may result when plant populations are sporadic, used as tisanes or herbal preparations, or when DHPAs contaminate milk, honey, pollen, or other animal-derived products. Such subclinical exposures may contribute to the development of chronic disease in humans or may be cumulative and probably slowly progress until liver failure. Recent work using rodent models suggest increased neoplastic incidence even with very low DHPA doses of short durations. These concerns have moved some governments to prohibit or limit human exposure to DHPAs. The purpose of this review is to summarize some recent DHPA research, including in vitro and in vivo DHPA toxicity and carcinogenicity reports, and the implications of these findings with respect to diagnosis and prognosis for human and animal health.
Phytochemical Analysis | 2016
Steven M. Colegate; Dale R. Gardner; Joseph M. Betz; Ottmar W. Fischer; Sigrid Liede-Schumann; Michael Boppré
INTRODUCTION Within the Apocynoideae (Apocynaceae) pro-toxic dehydropyrrolizidine alkaloids have been reported only in Echiteae. However, attraction of pyrrolizidine alkaloid-pharmacophagous insects suggested their presence in Alafia cf. caudata Stapf (Nerieae: Alafiinae) and Amphineurion marginatum (Roxb.) D.J. Middleton (Apocyneae: Amphineuriinae), both used as medicinal plants. OBJECTIVE To confirm the presence of dehydropyrrolizidine alkaloids in Alafia cf. caudata and Amphineurion marginatum and identify their structures. METHODS Methanol extracts of air-dried roots, stems and leaves of non-flowering plants were analysed using HPLC-ESI(+)MS and MS/MS or collision-induced dissociation MS in low and/or high resolution modes. Pyrrolizidine alkaloids were tentatively identified based on the mass spectrometry data. Solid phase extraction combined with semi-preparative HPLC were used to isolate major alkaloids. Structures were elucidated using NMR spectroscopy. RESULTS Monoesters of retronecine with senecioic, hydroxysenecioic or syringic acids were identified in roots of Alafia cf. caudata. Two unprecedented 10-membered macrocyclic dehydropyrrolizidine alkaloid diesters were isolated from roots of Amphineurion marginatum. Pyrrolizidine alkaloids were detected in root and leaf material of Alafia cf. caudata at 0.34 and 0.01% dry weight (DW), and 0.13, 0.02 and 0.09% DW in root, leaf and stem material of Amphineurion marginatum. CONCLUSIONS The presence of pro-toxic dehydropyrrolizidine alkaloids suggests that medical preparations of these plants pose potential health risks to consumers. Dehydropyrrolizidine alkaloids are evidently more widespread in Apocynoideae than previously assumed, and it would seem rewarding to study other members of this family for the presence of pyrrolizidines, dehydropyrrolizidines and dihydropyrrolizines. Copyright
Journal of Applied Toxicology | 2016
Ammon W. Brown; Bryan L. Stegelmeier; Steven M. Colegate; Dale R. Gardner; Kip E. Panter; Edward L. Knoppel; Jeffery O. Hall
Comfrey (Symphytum officinale), a commonly used herb, contains dehydropyrrolizidine alkaloids that, as a group of bioactive metabolites, are potentially hepatotoxic, pneumotoxic, genotoxic and carcinogenic. Consequently, regulatory agencies and international health organizations have recommended comfrey be used for external use only. However, in many locations comfrey continues to be ingested as a tisane or as a leafy vegetable. The objective of this work was to compare the toxicity of a crude, reduced comfrey alkaloid extract to purified lycopsamine and intermedine that are major constituents of S. officinale. Male, California White chicks were orally exposed to daily doses of 0.04, 0.13, 0.26, 0.52 and 1.04 mmol lycopsamine, intermedine or reduced comfrey extract per kg bodyweight (BW) for 10 days. After another 7 days chicks were euthanized. Based on clinical signs of poisoning, serum biochemistry, and histopathological analysis the reduced comfrey extract was more toxic than lycopsamine and intermedine. This work suggests a greater than additive effect of the individual alkaloids and/or a more potent toxicity of the acetylated derivatives in the reduced comfrey extract. It also suggests that safety recommendations based on purified compounds may underestimate the potential toxicity of comfrey. Published 2015. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Journal of Applied Toxicology | 2015
Ammon W. Brown; Bryan L. Stegelmeier; Steven M. Colegate; Kip E. Panter; Edward L. Knoppel; Jeffery O. Hall
Dehydropyrrolizidine alkaloids (DHPA) are a large, structurally diverse group of plant‐derived protoxins that are potentially carcinogenic. With worldwide significance, these alkaloids can contaminate or be naturally present in the human food supply. To develop a small animal model that may be used to compare the carcinogenic potential of the various DHPAs, male heterozygous p53 knockout mice were administered a short‐term treatment of riddelliine 5, 15 or 45 mg kg–1 bodyweight day–1 by oral gavage for 14 days, or dosed a long‐term treatment of riddelliine 1 mg kg–1 bodyweight day–1 in pelleted feed for 12 months. Exposure to riddelliine increased the odds of tumor development in a dose‐responsive manner (odds ratio 2.05 and Wald 95% confidence limits between 1.2 and 3.4). The most common neoplastic process was hepatic hemangiosarcoma, which is consistent with published lifetime rodent riddelliine carcinogenesis studies. Angiectasis (peliosis hepatis) and other previously unreported lesions were also identified. The results of this research demonstrate the utility of the heterozygous p53 knockout mouse model for further investigation of comparative carcinogenesis of structurally and toxicologically different DHPAs and their N‐oxides. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Journal of Agricultural and Food Chemistry | 2014
Steven M. Colegate; Stanley L. Welsh; Dale R. Gardner; Joseph M. Betz; Kip E. Panter
Species of the Amsinckia genus (Boraginaceae) are known to produce potentially hepato-, pneumo-, and/or genotoxic dehydropyrrolizidine alkaloids. However, the taxonomic differentiation of Amsinckia species can be very subtle and there seems to be marked differences in toxicity toward grazing livestock. Methanol extracts of mass-limited leaf samples from herbarium specimens (collected from 1899 to 2013) of 10 Amsinckia species and one variety were analyzed using HPLC-esi(+)MS and MS/MS for the presence of potentially toxic dehydropyrrolizidine alkaloids and/or their N-oxides. Dehydropyrrolizidine alkaloids were detected in all specimens examined ranging from about 1 to 4000 μg/g of plant. Usually occurring mainly as their N-oxides, the predominant alkaloids were the epimeric lycopsamine and intermedine. Also sometimes observed in higher concentrations were the 3′- and 7-acetyl derivatives of lycopsamine/intermedine and their N-oxides. Within a designated species, an inconsistent profile was often observed that may be due to natural variation, taxonomic misassignment, or nonuniform degradation due to plant collection and storage differences.
Collaboration
Dive into the Steven M. Colegate's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputs