Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven M. Wise is active.

Publication


Featured researches published by Steven M. Wise.


Applied Physics Letters | 2005

Quantum dot formation on a strain-patterned epitaxial thin film

Steven M. Wise; John Lowengrub; Junseok Kim; Katsuyo Thornton; Peter W. Voorhees; William C. Johnson

We model the effect of substrate strain patterning on the self-assembly of quantum dots (QDs). When the surface energy is isotropic, we demonstrate that strain patterning via embedded substrate inclusions may result in ordered, self-organized QD arrays. However, for systems with strong cubic surface energy anisotropy, the same patterning does not readily lead to an ordered array of pyramids at long times. We conclude that the form of the surface energy anisotropy strongly influences the manner in which QDs self-assemble into regular arrays.


Nonlinearity | 2010

Nonlinear modelling of cancer: bridging the gap between cells and tumours

John Lowengrub; Hermann B. Frieboes; Fang Jin; Yao-Li Chuang; Xiangrong Li; Paul Macklin; Steven M. Wise; Vittorio Cristini

Despite major scientific, medical and technological advances over the last few decades, a cure for cancer remains elusive. The disease initiation is complex, and including initiation and avascular growth, onset of hypoxia and acidosis due to accumulation of cells beyond normal physiological conditions, inducement of angiogenesis from the surrounding vasculature, tumour vascularization and further growth, and invasion of surrounding tissue and metastasis. Although the focus historically has been to study these events through experimental and clinical observations, mathematical modelling and simulation that enable analysis at multiple time and spatial scales have also complemented these efforts. Here, we provide an overview of this multiscale modelling focusing on the growth phase of tumours and bypassing the initial stage of tumourigenesis. While we briefly review discrete modelling, our focus is on the continuum approach. We limit the scope further by considering models of tumour progression that do not distinguish tumour cells by their age. We also do not consider immune system interactions nor do we describe models of therapy. We do discuss hybrid-modelling frameworks, where the tumour tissue is modelled using both discrete (cell-scale) and continuum (tumour-scale) elements, thus connecting the micrometre to the centimetre tumour scale. We review recent examples that incorporate experimental data into model parameters. We show that recent mathematical modelling predicts that transport limitations of cell nutrients, oxygen and growth factors may result in cell death that leads to morphological instability, providing a mechanism for invasion via tumour fingering and fragmentation. These conditions induce selection pressure for cell survivability, and may lead to additional genetic mutations. Mathematical modelling further shows that parameters that control the tumour mass shape also control its ability to invade. Thus, tumour morphology may serve as a predictor of invasiveness and treatment prognosis.


Journal of Theoretical Biology | 2008

Three-dimensional multispecies nonlinear tumor growth ¯I Model and numerical method

Steven M. Wise; John Lowengrub; Hermann B. Frieboes; Vittorio Cristini

This is the first paper in a two-part series in which we develop, analyze, and simulate a diffuse interface continuum model of multispecies tumor growth and tumor-induced angiogenesis in two and three dimensions. Three-dimensional simulations of nonlinear tumor growth and neovascularization using this diffuse interface model were recently presented in Frieboes et al. [2007. Computer simulation of glioma growth and morphology. NeuroImage S59-S70], but that paper did not describe the details of the model or the numerical algorithm. This is done here. In this diffuse interface approach, sharp interfaces are replaced by narrow transition layers that arise due to differential adhesive forces among the cell species. Accordingly, a continuum model of adhesion is introduced. The model is thermodynamically consistent, is related to recently developed mixture models, and thus is capable of providing a detailed description of tumor progression. The model is well-posed and consists of fourth-order nonlinear advection-reaction-diffusion equations (of Cahn-Hilliard-type) for the cell species coupled with reaction-diffusion equations for the substrate components. We demonstrate analytically and numerically that when the diffuse interface thickness tends to zero, the system reduces to a classical sharp interface model. Using a new fully adaptive and nonlinear multigrid/finite difference method, the system is simulated efficiently. In this first paper, we present simulations of unstable avascular tumor growth in two and three dimensions and demonstrate that our techniques now make large-scale three-dimensional simulations of tumors with complex morphologies computationally feasible. In part II of this study, we will investigate multispecies tumor invasion, tumor-induced angiogenesis, and focus on the morphological instabilities that may underlie invasive phenotypes.


NeuroImage | 2007

Computer simulation of glioma growth and morphology.

Hermann B. Frieboes; John Lowengrub; Steven M. Wise; Xiaoming Zheng; Paul Macklin; Elaine L. Bearer; Vittorio Cristini

Despite major advances in the study of glioma, the quantitative links between intra-tumor molecular/cellular properties, clinically observable properties such as morphology, and critical tumor behaviors such as growth and invasiveness remain unclear, hampering more effective coupling of tumor physical characteristics with implications for prognosis and therapy. Although molecular biology, histopathology, and radiological imaging are employed in this endeavor, studies are severely challenged by the multitude of different physical scales involved in tumor growth, i.e., from molecular nanoscale to cell microscale and finally to tissue centimeter scale. Consequently, it is often difficult to determine the underlying dynamics across dimensions. New techniques are needed to tackle these issues. Here, we address this multi-scalar problem by employing a novel predictive three-dimensional mathematical and computational model based on first-principle equations (conservation laws of physics) that describe mathematically the diffusion of cell substrates and other processes determining tumor mass growth and invasion. The model uses conserved variables to represent known determinants of glioma behavior, e.g., cell density and oxygen concentration, as well as biological functional relationships and parameters linking phenomena at different scales whose specific forms and values are hypothesized and calculated based on in vitro and in vivo experiments and from histopathology of tissue specimens from human gliomas. This model enables correlation of glioma morphology to tumor growth by quantifying interdependence of tumor mass on the microenvironment (e.g., hypoxia, tissue disruption) and on the cellular phenotypes (e.g., mitosis and apoptosis rates, cell adhesion strength). Once functional relationships between variables and associated parameter values have been informed, e.g., from histopathology or intra-operative analysis, this model can be used for disease diagnosis/prognosis, hypothesis testing, and to guide surgery and therapy. In particular, this tool identifies and quantifies the effects of vascularization and other cell-scale glioma morphological characteristics as predictors of tumor-scale growth and invasion.


Journal of Mathematical Biology | 2009

Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching

Vittorio Cristini; Xiangrong Li; John Lowengrub; Steven M. Wise

We develop a thermodynamically consistent mixture model for avascular solid tumor growth which takes into account the effects of cell-to-cell adhesion, and taxis inducing chemical and molecular species. The mixture model is well-posed and the governing equations are of Cahn–Hilliard type. When there are only two phases, our asymptotic analysis shows that earlier single-phase models may be recovered as limiting cases of a two-phase model. To solve the governing equations, we develop a numerical algorithm based on an adaptive Cartesian block-structured mesh refinement scheme. A centered-difference approximation is used for the space discretization so that the scheme is second order accurate in space. An implicit discretization in time is used which results in nonlinear equations at implicit time levels. We further employ a gradient stable discretization scheme so that the nonlinear equations are solvable for very large time steps. To solve those equations we use a nonlinear multilevel/multigrid method which is of an optimal order O(N) where N is the number of grid points. Spherically symmetric and fully two dimensional nonlinear numerical simulations are performed. We investigate tumor evolution in nutrient-rich and nutrient-poor tissues. A number of important results have been uncovered. For example, we demonstrate that the tumor may suffer from taxis-driven fingering instabilities which are most dramatic when cell proliferation is low, as predicted by linear stability theory. This is also observed in experiments. This work shows that taxis may play a role in tumor invasion and that when nutrient plays the role of a chemoattractant, the diffusional instability is exacerbated by nutrient gradients. Accordingly, we believe this model is capable of describing complex invasive patterns observed in experiments.


SIAM Journal on Numerical Analysis | 2009

An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation

Steven M. Wise; Cheng Wang; John Lowengrub

We present an unconditionally energy stable finite-difference scheme for the phase field crystal equation. The method is based on a convex splitting of a discrete energy and is semi-implicit. The equation at the implicit time level is nonlinear but represents the gradient of a strictly convex function and is thus uniquely solvable, regardless of time step size. We present local-in-time error estimates that ensure the convergence of the scheme. While this paper is primarily concerned with the phase field crystal equation, most of the theoretical results hold for the related Swift-Hohenberg equation as well.


Journal of Theoretical Biology | 2010

Three-dimensional multispecies nonlinear tumor growth—II: Tumor invasion and angiogenesis

Hermann B. Frieboes; Fang Jin; Yao-Li Chuang; Steven M. Wise; John Lowengrub; Vittorio Cristini

We extend the diffuse interface model developed in Wise et al. (2008) to study nonlinear tumor growth in 3-D. Extensions include the tracking of multiple viable cell species populations through a continuum diffuse-interface method, onset and aging of discrete tumor vessels through angiogenesis, and incorporation of individual cell movement using a hybrid continuum-discrete approach. We investigate disease progression as a function of cellular-scale parameters such as proliferation and oxygen/nutrient uptake rates. We find that heterogeneity in the physiologically complex tumor microenvironment, caused by non-uniform distribution of oxygen, cell nutrients, and metabolites, as well as phenotypic changes affecting cellular-scale parameters, can be quantitatively linked to the tumor macro-scale as a mechanism that promotes morphological instability. This instability leads to invasion through tumor infiltration of surrounding healthy tissue. Models that employ a biologically founded, multiscale approach, as illustrated in this work, could help to quantitatively link the critical effect of heterogeneity in the tumor microenvironment with clinically observed tumor growth and invasion. Using patient tumor-specific parameter values, this may provide a predictive tool to characterize the complex in vivo tumor physiological characteristics and clinical response, and thus lead to improved treatment modalities and prognosis.


Journal of Computational Physics | 2007

Solving the regularized, strongly anisotropic Cahn–Hilliard equation by an adaptive nonlinear multigrid method

Steven M. Wise; Junseok Kim; John Lowengrub

Abstract We present efficient, second-order accurate and adaptive finite-difference methods to solve the regularized, strongly anisotropic Cahn–Hilliard equation in 2D and 3D. When the surface energy anisotropy is sufficiently strong, there are missing orientations in the equilibrium level curves of the diffuse interface solutions, corresponding to those missing from the sharp interface Wulff shape, and the anisotropic Cahn–Hilliard equation becomes ill-posed. To regularize the equation, a higher-order derivative term is added to the energy. This leads to a sixth-order, nonlinear parabolic equation for the order parameter. An implicit time discretization is used to remove the high-order time step stability constraints. Dynamic block-structured Cartesian mesh refinement is used to highly resolve narrow interfacial layers. A multilevel, nonlinear multigrid method is used to solve the nonlinear equations at the implicit time level. One of the keys to the success of the method is the treatment of the anisotropic term. This term is discretized in conservation form in space and is discretized fully implicitly in time. Numerical simulations are presented that confirm the accuracy, efficiency and stability of the scheme. We study the dynamics of interfaces under strong anisotropy and compare near-equilibrium diffuse interface solutions to the sharp interface Wulff shapes in 2D and 3D. We also simulate large-scale coarsening of a corrugated surface (in 3D) evolving by anisotropic surface diffusion. We show the emergence of long-range order during coarsening and an interesting mechanism of ordered coarsening.


Journal of Computational Physics | 2009

Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation

Zhengzheng Hu; Steven M. Wise; Cheng Wang; John Lowengrub

In this paper we present and compare two unconditionally energy stable finite-difference schemes for the phase field crystal equation. The first is a one-step scheme based on a convex splitting of a discrete energy by Wise et al. [S.M. Wise, C. Wang, J.S. Lowengrub, An energy stable and convergent finite-difference scheme for the phase field crystal equation, SIAM J. Numer. Anal., in press]. In this scheme, which is first order in time and second order in space, the discrete energy is non-increasing for any time step. The second scheme we consider is a new, fully second-order two-step algorithm. In the new scheme, the discrete energy is bounded by its initial value for any time step. In both methods, the equations at the implicit time level are nonlinear but represent the gradients of strictly convex functions and are thus uniquely solvable, regardless of time step-size. We solve the nonlinear equations using an efficient nonlinear multigrid method. Numerical simulations are presented and confirm the stability, efficiency and accuracy of the schemes.


Cancer Research | 2009

Multiparameter Computational Modeling of Tumor Invasion

Elaine L. Bearer; John Lowengrub; Hermann B. Frieboes; Yao Li Chuang; Fang Jin; Steven M. Wise; Mauro Ferrari; David B. Agus; Vittorio Cristini

Clinical outcome prognostication in oncology is a guiding principle in therapeutic choice. A wealth of qualitative empirical evidence links disease progression with tumor morphology, histopathology, invasion, and associated molecular phenomena. However, the quantitative contribution of each of the known parameters in this progression remains elusive. Mathematical modeling can provide the capability to quantify the connection between variables governing growth, prognosis, and treatment outcome. By quantifying the link between the tumor boundary morphology and the invasive phenotype, this work provides a quantitative tool for the study of tumor progression and diagnostic/prognostic applications. This establishes a framework for monitoring system perturbation towards development of therapeutic strategies and correlation to clinical outcome for prognosis.

Collaboration


Dive into the Steven M. Wise's collaboration.

Top Co-Authors

Avatar

John Lowengrub

University of California

View shared research outputs
Top Co-Authors

Avatar

Cheng Wang

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hermann B. Frieboes

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoming Wang

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Macklin

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Xiangrong Li

University of California

View shared research outputs
Top Co-Authors

Avatar

Xiaoming Zheng

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge