Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven Mankoci is active.

Publication


Featured researches published by Steven Mankoci.


Biomaterials Science | 2013

Crystal structures of CaSiO3 polymorphs control growth and osteogenic differentiation of human mesenchymal stem cells on bioceramic surfaces

Nianli Zhang; James A. Molenda; Steven Mankoci; Xianfeng Zhou; William L. Murphy; Nita Sahai

The repair and replacement of damaged or diseased human bone tissue requires a stable interface between the orthopedic implant and living tissue. The ideal material should be both osteoconductive (promote bonding to bone) and osteoinductive (induce osteogenic differentiation of cells and generate new bone). Partially resorbable bioceramic materials with both properties are developed by expensive trial-and-error methods. Structure-reactivity relationships for predicting the osteoinductive properties of ceramics would significantly increase the efficiency of developing materials for bone tissue engineering. Here we propose the novel hypothesis that the crystal structure of a bioceramic controls the release rates, subsequent surface modifications due to precipitation of new phases, and thus, the concentrations of soluble factors, and ultimately, the attachment, viability and osteogenic differentiation of human Mesenchymal Stem Cells (hMSCs). To illustrate our hypothesis, we used two CaSiO3 polymorphs, pseudo-wollastonite (psw, β-CaSiO3) and wollastonite (wol, α-CaSiO3) as scaffolds for hMSC culture. Polymorphs are materials which have identical chemical composition and stoichiometry, but different crystal structures. We combined the results of detailed surface characterizations, including environmental Scanning Electron Microscopy (SEM) back-scattered imaging, and spot-analysis and 2D elemental mapping by SEM-Energy Dispersive X-ray (SEM-EDX), High Resolution Transmission Electron Microscopy (HRTEM) and surface roughness analysis; culture medium solution analyses; and molecular/genetic assays from cell culture. Our results confirmed the hypothesis that the psw polymorph, which has a strained silicate ring structure, is more osteoinductive than the wol polymorph, which has a more stable, open silicate chain structure. The observations could be attributed to easier dissolution (resorption) of psw compared to wol, which resulted in concentration profiles that were more osteoinductive for the former. Thus, we showed that crystal structure is a fundamental parameter to be considered in the intelligent design of pro-osteogenic, partially resorbable bioceramics.


Acta Biomaterialia | 2016

Orthosilicic acid, Si(OH)4, stimulates osteoblast differentiation in vitro by upregulating miR-146a to antagonize NF-κB activation

Xianfeng Zhou; Fouad M. Moussa; Steven Mankoci; Putu Ustriyana; Nianli Zhang; Samir M. Abdelmagid; Jim Molenda; William L. Murphy; Fayez F. Safadi; Nita Sahai

UNLABELLED Accumulating evidence over the last 40years suggests that silicate from dietary as well as silicate-containing biomaterials is beneficial to bone formation. However, the exact biological role(s) of silicate on bone cells are still unclear and controversial. Here, we report that orthosilicic acid (Si(OH)4) stimulated human mesenchymal stem cells (hMSCs) osteoblastic differentiation in vitro. To elucidate the possible molecular mechanisms, differential microRNA microarray analysis was used to show that Si(OH)4 significantly up-regulated microRNA-146a (miR-146a) expression during hMSC osteogenic differentiation. Si(OH)4 induced miR-146a expression profiling was further validated by quantitative RT-PCR (qRT-PCR), which indicated miR-146a was up-regulated during the late stages of hMSC osteogenic differentiation. Inhibition of miR-146a function by anti-miR-146a suppressed osteogenic differentiation of MC3T3 pre-osteoblasts, whereas Si(OH)4 treatment promoted osteoblast-specific genes transcription, alkaline phosphatase (ALP) production, and mineralization. Furthermore, luciferase reporter assay, Western blotting, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence showed that Si(OH)4 decreased TNFα-induced activation of NF-κB, a signal transduction pathway that inhibits osteoblastic bone formation, through the known miR-146a negative feedback loop. Our studies established a mechanism for Si(OH)4 to promote osteogenesis by antagonizing NF-κB activation via miR-146a, which might be interesting to guide the design of osteo-inductive biomaterials for treatments of bone defects in humans. STATEMENT OF SIGNIFICANCE Accumulating evidence over 40years suggests that silicate is beneficial to bone formation. However, the biological role(s) of silicate on bone cells are still unclear and controversial. Here, we report that Si(OH)4, the simplest form of silicate, can stimulate human mesenchymal stem cells osteoblastic differentiation. We identified that miR-146a is the expression signature in bone cells treated with Si(OH)4. Further analysis of miR-146a in bone cells reveals that Si(OH)4 upregulates miR-146a to antagonize the activation of NF-κB. Si(OH)4 was also shown to deactivate the same NF-κB pathway to suppress osteoclast formation. Our findings are important to the development of third-generation cell-and gene affecting biomaterials, and suggest silicate and miR-146a can be used as pharmaceuticals for bone fracture prevention and therapy.


Materials Science and Engineering: C | 2017

A systematic study of mechanical properties, corrosion behavior and biocompatibility of AZ31B Mg alloy after ultrasonic nanocrystal surface modification

Xiaoning Hou; Haifeng Qin; Hongyu Gao; Steven Mankoci; Ruixia Zhang; Xianfeng Zhou; Zhencheng Ren; Gary L. Doll; Ashlie Martini; Nita Sahai; Yalin Dong; Chang Ye

Magnesium alloys have tremendous potential for biomedical applications due to their good biocompatibility, osteoconductivity, and degradability, but can be limited by their poor mechanical properties and fast corrosion in the physiological environment. In this study, ultrasonic nanocrystal surface modification (UNSM), a recently developed surface processing technique that utilizes ultrasonic impacts to induce plastic strain on metal surfaces, was applied to an AZ31B magnesium (Mg) alloy. The mechanical properties, corrosion resistance, and biocompatibility of the alloy after UNSM treatment were studied systematically. Significant improvement in hardness, yield stress and wear resistance was achieved after the UNSM treatment. In addition, the corrosion behavior of UNSM-treated AZ31B was not compromised compared with the untreated samples, as demonstrated by the weight loss and released element concentrations of Mg and Al after immersion in alpha-minimum essential medium (α-MEM) for 24h. The in vitro biocompatibility of the AZ31B Mg alloys toward adipose-derived stem cells (ADSCs) before and after UNSM processing was also evaluated using a cell culture study. Comparable cell attachments were achieved between the two groups. These studies showed that UNSM could significantly improve the mechanical properties of Mg alloys without compromising their corrosion rate and biocompatibility in vitro. These findings suggest that UNSM is a promising method to treat biodegradable Mg alloys for orthopaedic applications.


ACS Applied Materials & Interfaces | 2017

Nontoxic Cationic Coumarin Polyester Coatings Prevent Pseudomonas aeruginosa Biofilm Formation

Elaheh A. Chamsaz; Steven Mankoci; Hazel A. Barton; Abraham Joy

The rapid increase in bacterial infections and antimicrobial resistance is a growing public health concern. Infections arising from bacterial contamination of surgical tools, medical implants, catheters, and hospital surfaces can potentially be addressed by antimicrobial polymeric coatings. The challenge in developing such polymers for in vivo use is the ability to achieve high antimicrobial efficacy while at the same time being nontoxic to human cells. Although several classes of antimicrobial polymers have been developed, many of them cannot be used in the clinical setting due to their nonselective toxicity toward bacteria and mammalian cells. Here, we demonstrate that coumarin polyesters with cationic pendant groups are very effective against Gram negative Pseudomonas aeruginosa. Coumarin polyesters with pendant cationic amine groups were coated onto glass coverslips and tested for their antimicrobial activity against P. aeruginosa colonization of the surface. The results demonstrate that the cationic coumarin polyester kills the surface attached bacterial cells preventing biofilm formation but does not show any hemolytic activity or discernible toxicity toward mammalian cells. The antimicrobial polyesters described in this work have several advantages desired in antimicrobial coatings such as high antimicrobial activity, low toxicity toward mammalian cells, visualization and ease of synthesis and fabrication, all of which are necessary for translation to the clinic.


Journal of Biomedical Materials Research Part A | 2017

Silicates in orthopedics and bone tissue engineering materials

Xianfeng Zhou; Nianli Zhang; Steven Mankoci; Nita Sahai

Following the success of silicate-based glasses as bioactive materials, silicates are believed to play important roles in promoting bone formation and have therefore been considered to provide a hydroxyapatite (HAP) surface layer capable of binding to bone as well as potentially being a pro-osteoinductive factor. Natural silicate minerals and silicate-substituted HAPs are also being actively investigated as orthopaedic bone and dental biomaterials for application in tissue engineering. However, the mechanisms for the proposed roles of silicate in these materials have not been fully understood and are controversial. Here, we review the potential roles of silicate for bone tissue engineering applications and recent breakthroughs in identifying the cellular-level molecular mechanisms for the osteoinductivity of silica. The goal of this article is to inspire new ideas for the rational design of third-generation cell-and gene-affecting biomaterials.


Polymer Chemistry | 2016

A coacervate-forming biodegradable polyester with elevated LCST based on bis-(2-methoxyethyl)amine

John P. Swanson; M. R. Martinez; Megan A. Cruz; Steven Mankoci; Philip J. Costanzo; Abraham Joy

Recently, we reported a new class of biodegradable, thermoresponsive polyesters (TR-PEs) inspired by polyacrylamides and elastin-like peptides (ELPs). The polyesters exhibit tunable cloud point temperatures (Tcp) and thermoresponsive coacervation in aqueous solution as shown via UV-vis spectroscopy, 1H NMR, and DLS. However, the Tcp of all TR-PEs remained low (<15 °C), and higher thermoresponsivity would be beneficial for many applications. This study examines the synthesis, polymerization, and analysis of a new monomer bearing a more hydrophilic pendant group, bis-2-methoxyethylamine (bMoEtA). The resulting TR-PE, TR-bMoEtAPE, displays a threefold increase in Tcp (ca. 50 °C) that is affected by solution (DI water vs. phosphate buffered saline), concentration (1–40 mg mL−1) molecular weight (20–130 kDa), and cosolutes (Hofmeister salts and urea). The Tcp and Tg of random TR-bMoEtAPE copolymers can be tuned via comonomer feed. Variable temperature 1H NMR indicated a cooperative coacervation mechanism above Tcp, further reinforced by DLS measurements. As evidenced by UV-vis and SEC analysis, TR-bMoEtAPE underwent rapid degradation over a period of 7 days in DI water and PBS. Finally, cytotoxicity studies suggested that TR-bMoEtAPE is non-cytotoxic even at high concentrations (ca. 1000 μg mL−1). The increased Tcp and tunability suggests TR-bMoEtAPE as a potential candidate for future functionalized TR-PE therapeutic-delivery systems.


Materials Science and Engineering: C | 2018

Hierarchical structures on nickel-titanium fabricated by ultrasonic nanocrystal surface modification

Xiaoning Hou; Steven Mankoci; Nicholas Walters; Hongyu Gao; Ruixia Zhang; Shengxi Li; Haifeng Qin; Zhencheng Ren; Gary L. Doll; Hongbo Cong; Ashlie Martini; Vijay K. Vasudevan; Xianfeng Zhou; Nita Sahai; Yalin Dong; Chang Ye

Hierarchical structures on metallic implants can enhance the interaction between cells and implants and thus increase their biocompatibility. However, it is difficult to directly fabricate hierarchical structures on metallic implants. In this study, we used a simple one-step method, ultrasonic nanocrystal surface modification (UNSM), to fabricate hierarchical surface structures on a nickel-titanium (NiTi) alloy. During UNSM, a tungsten carbide ball hits metal surfaces at ultrasonic frequency. The overlapping of the ultrasonic strikes generates hierarchical structures with microscale grooves and embedded nanoscale wrinkles. Cell culture experiments showed that cells adhere better and grow more prolifically on the UNSM-treated samples. Compared with the untreated samples, the UNSM-treated samples have higher corrosion resistance. In addition, the surface hardness increased from 243 Hv to 296 Hv and the scratch hardness increased by 22%. Overall, the improved biocompatibility, higher corrosion resistance, and enhanced mechanical properties demonstrate that UNSM is a simple and effective method to process metallic implant materials.


Biomaterials | 2015

Biomimetic and nanostructured hybrid bioactive glass.

Xianfeng Zhou; Nita Sahai; Lin Qi; Steven Mankoci; Weilong Zhao


ACS Biomaterials Science & Engineering | 2017

Bactericidal Peptidomimetic Polyurethanes with Remarkable Selectivity against Escherichia coli

Steven Mankoci; Ricky L. Kaiser; Nita Sahai; Hazel A. Barton; Abraham Joy


Surface & Coatings Technology | 2018

The effects of laser shock peening on the mechanical properties and biomedical behavior of AZ31B magnesium alloy

Ruixia Zhang; Xianfeng Zhou; Hongyu Gao; Steven Mankoci; Yang Liu; Xiahan Sang; Haifeng Qin; Xiaoning Hou; Zhencheng Ren; Gary L. Doll; Ashlie Martini; Yalin Dong; Nita Sahai; Chang Ye

Collaboration


Dive into the Steven Mankoci's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge